

# On the Zachman Framework

It is illegal to copy, share or show this document  
(or other document published at <http://avancier.co.uk>)  
without the written permission of the copyright holder

- ▶ The human and computer activity systems of a large enterprise are complex.
- ▶ Comprehensive descriptions of those systems must also be large and complex.
- ▶ People need a taxonomy or classification scheme to help them organize system description artefacts.
- ▶ The classification scheme may be called a description or document or content framework.
- ▶ Here is it called schema.

## Three candidate dimensions for a classification schema

- ▶ Candidate dimensions for a table mapping one dimension of business system architecture definition to another.

| Composition              | Generalisation      | Idealisation      |
|--------------------------|---------------------|-------------------|
| Coarse-grained composite | Universal           | Concept           |
| Mid-grained composite    | Fairly generic      | Logical Model     |
| Fine-grained composite   | Fairly specific     | Physical Model    |
| Elementary part          | Uniquely configured | Physical Material |
| Decomposition            | Specialisation      | Realisation       |

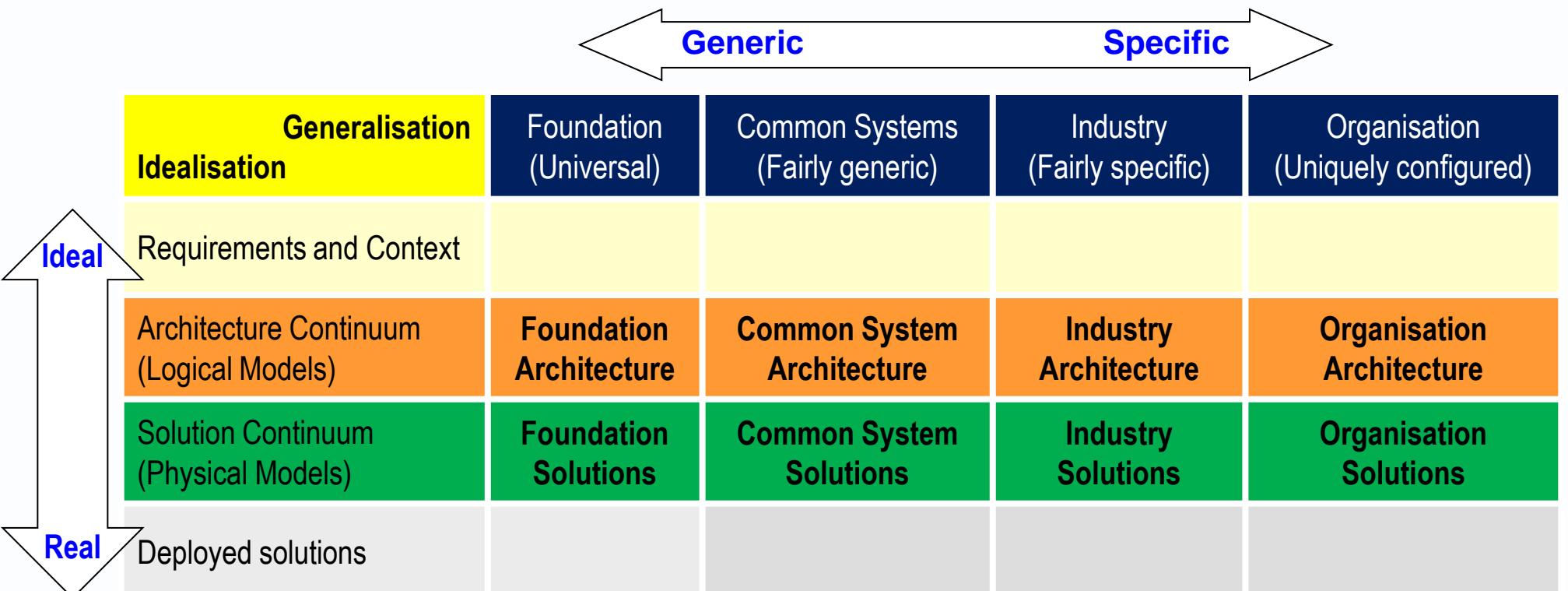
- ▶ A schema like this provides a two-dimensional index to descriptive artefacts. You can think of it as set of pigeon holes.

| Generalisation<br>Composition | Universal | Fairly<br>generic | Fairly<br>specific | Uniquely<br>configured |
|-------------------------------|-----------|-------------------|--------------------|------------------------|
| Coarse-grained<br>composite   |           |                   |                    |                        |
| Mid-grained composite         |           |                   |                    |                        |
| Fine-grained composite        |           |                   |                    |                        |
| Elementary parts              |           |                   |                    |                        |

## A different set of pigeon holes...

- ▶ Mapping POLDAT (the six domains of change in the Catalyst methodology of CSC) to levels of composition.

| Domains Composition      | Process | Organisation | Location | Data | Application | Technology |
|--------------------------|---------|--------------|----------|------|-------------|------------|
| Coarse-grained composite |         |              |          |      |             |            |
| Mid-grained composite    |         |              |          |      |             |            |
| Fine-grained composite   |         |              |          |      |             |            |
| Elementary parts         |         |              |          |      |             |            |


## A different set of pigeon holes...

- ▶ Mapping POLDAT (the six domains of change in the Catalyst methodology of CSC) to levels of idealisation

| Domains<br>Idealisation | Process | Organisation | Location | Data | Application | Technology |
|-------------------------|---------|--------------|----------|------|-------------|------------|
| Conceptual              |         |              |          |      |             |            |
| Logical                 |         |              |          |      |             |            |
| Physical                |         |              |          |      |             |            |
| Real                    |         |              |          |      |             |            |

# TOGAF's “Enterprise Continuum”

- ▶ This maps levels of idealisation to levels of generalisation.



- ▶ Architects can assign each description artefact to a cell of the schema, then use the schema as an index to find artefacts in a repository.

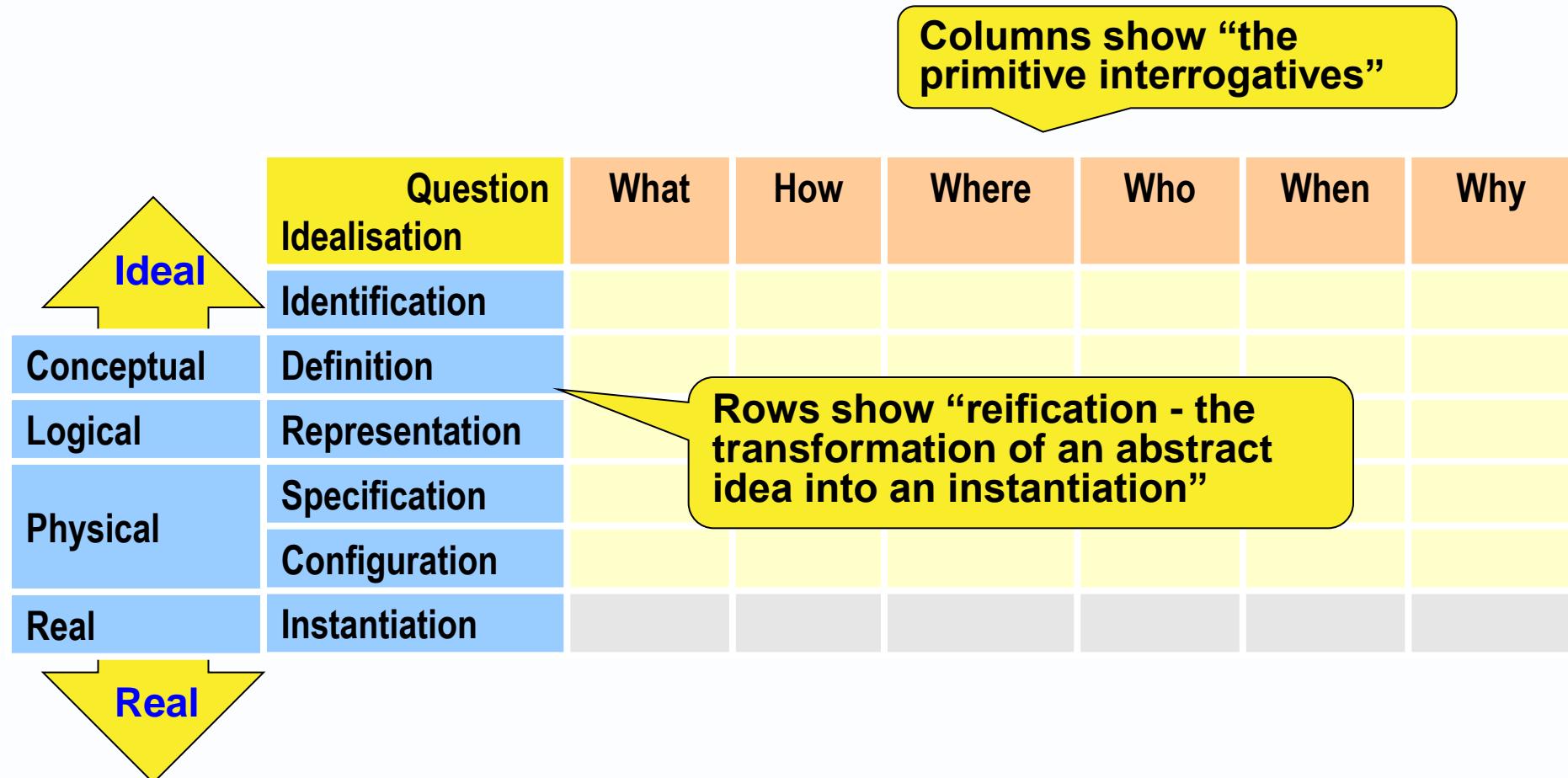
## So, to the Zachman Framework



- ▶ A structure for classifying architecture description artefacts.
- ▶ Presented in 1987 as an “Information System Architecture Framework”, but since the mid 1990s has been called an EA Framework.

## In 2008, the Zachman International web site quoted Zachman

- ▶ “The Zachman Framework is a schema - classifications that have been in use for literally thousands of years.
  
- ▶ The first is the fundamentals of communication found in **the primitive interrogatives:**
- ▶ **What, How, When, Who, Where, and Why.**
- ▶ It is the integration of answers to these questions that enables the comprehensive, composite description of complex ideas.
  
- ▶ The second is derived from **reification**, the transformation of an abstract idea into an instantiation that was initially postulated by ancient Greek philosophers and is labeled in The Framework:
- ▶ **Identification, Definition, Representation, Specification, Configuration and Instantiation.”**


## So, in its purest form, Zachman's schema would be

- ▶ Map 5 levels of idealisation to 6 analysis questions

**Columns show “the primitive interrogatives”**

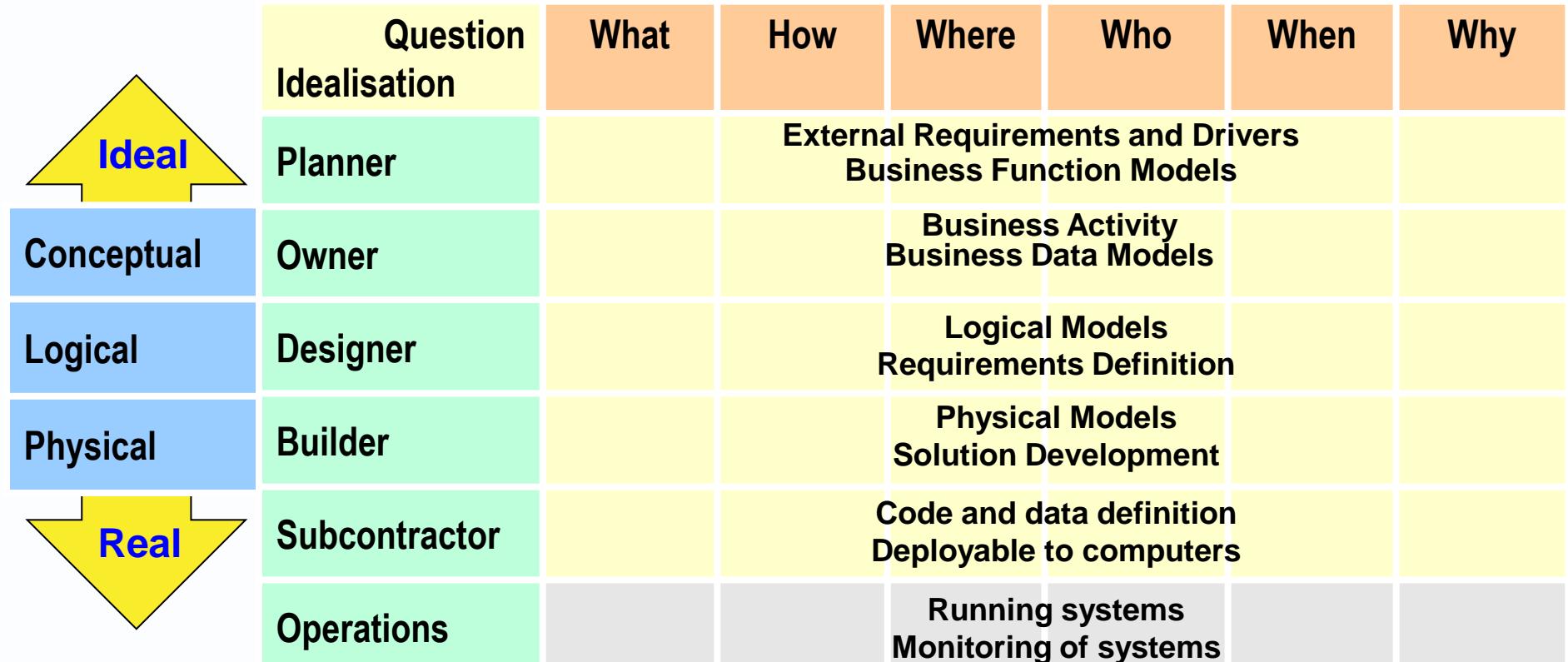
|            | Question Idealisation | What | How | Where | Who | When | Why |
|------------|-----------------------|------|-----|-------|-----|------|-----|
|            | Identification        |      |     |       |     |      |     |
| Conceptual | Definition            |      |     |       |     |      |     |
| Logical    | Representation        |      |     |       |     |      |     |
| Physical   | Specification         |      |     |       |     |      |     |
|            | Configuration         |      |     |       |     |      |     |
| Real       | Instantiation         |      |     |       |     |      |     |

**Rows show “reification - the transformation of an abstract idea into an instantiation”**



## But the Zachman framework was long introduced as

“A logical structure for classifying and organizing the descriptive representations of an Enterprise that are significant to managers and to developers of Enterprise systems.”


- ▶ “It uses a grid of 6 basic **questions** asked of 5 **stakeholder groups**

| Question Idealisation | What | How | Where | Who | When | Why |
|-----------------------|------|-----|-------|-----|------|-----|
| Planner               |      |     |       |     |      |     |
| Owner                 |      |     |       |     |      |     |
| Designer              |      |     |       |     |      |     |
| Builder               |      |     |       |     |      |     |
| Subcontractor         |      |     |       |     |      |     |
| Operations            |      |     |       |     |      |     |

- ▶ Zachman, along with most EA, is less concerned with operational systems at the bottom, more with the description and documentation above.

# To illustrate what idealisation means

- ▶ This is an interpretation, not necessarily what Zachman would propose



|            | Question      | What | How | Where                                                         | Who                                       | When | Why |
|------------|---------------|------|-----|---------------------------------------------------------------|-------------------------------------------|------|-----|
| Ideal      | Idealisation  |      |     |                                                               |                                           |      |     |
| Conceptual | Planner       |      |     | External Requirements and Drivers<br>Business Function Models |                                           |      |     |
| Logical    | Owner         |      |     |                                                               | Business Activity<br>Business Data Models |      |     |
| Physical   | Designer      |      |     |                                                               | Logical Models<br>Requirements Definition |      |     |
|            | Builder       |      |     |                                                               | Physical Models<br>Solution Development   |      |     |
| Real       | Subcontractor |      |     | Code and data definition<br>Deployable to computers           |                                           |      |     |
|            | Operations    |      |     | Running systems<br>Monitoring of systems                      |                                           |      |     |

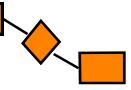
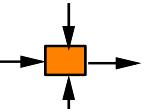
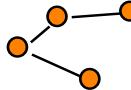
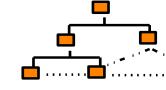
# 1987: The Zachman Framework for IS Architecture - version 1

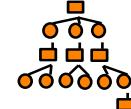
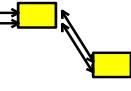
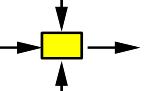
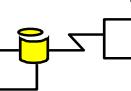
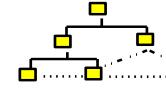
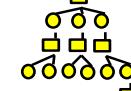
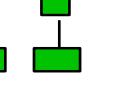
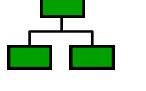
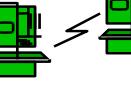
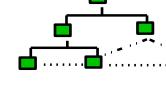
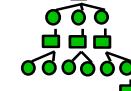


- ▶ Mapped the 6 questions to architectural elements
- ▶ Mapped the 5 levels of abstraction to stakeholders.

| Zachman Framework v1 |                        |               | What | How      | Where   | Who  | When     | Why      |
|----------------------|------------------------|---------------|------|----------|---------|------|----------|----------|
| Viewpoint            | Idealisation           | Stakeholder   | Data | Function | Network | Org. | Schedule | Strategy |
| Scope                | Contextual             | Planner       |      |          |         |      |          |          |
| Enterprise           | Conceptual             | Owner         |      |          |         |      |          |          |
| System               | Logical                | Designer      |      |          |         |      |          |          |
| Technology           | Physical               | Builder       |      |          |         |      |          |          |
| Detailed             | Out of context         | Subcontractor |      |          |         |      |          |          |
|                      | Functioning Enterprise |               |      |          |         |      |          |          |

# 2009: The Zachman Framework for EA (v 2)












- ▶ Zachman grew uncomfortable about what he saw as misinterpretations.
- ▶ E.g. “What” is not only about data. So he changed that to “inventory sets”.
- ▶ And rows were relabelled to show “reification” of descriptive artefacts as things in operational systems

| Zachman Framework v2 |                  |                             | What           | How                 | Where         | Who         | When         | Why                |
|----------------------|------------------|-----------------------------|----------------|---------------------|---------------|-------------|--------------|--------------------|
| Viewpoint            | Idealisation     | Stakeholder                 | Inventory sets | Process Transform'n | Network nodes | Org. groups | Time periods | Motivation reasons |
| Scope                | Contexts         | Strategists & theorists     |                |                     |               |             |              |                    |
| Business             | Concepts         | Enterprise leaders & owners |                |                     |               |             |              |                    |
| System               | Logic            | Architects & designers      |                |                     |               |             |              |                    |
| Technology           | Physics          | Engineers & builders        |                |                     |               |             |              |                    |
| Component            | Assemblies       | Technicians & implementers  |                |                     |               |             |              |                    |
| Operations           | Instance classes | Workers & participants      |                |                     |               |             |              |                    |

# 2011: The Zachman Framework for EA (v3)

| Zachman Framework v3          |                         | What (D)                            | How (P)                             | Where (L)                           | Who (O)                             | When                                | Why                                 |
|-------------------------------|-------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Idealisation                  | Stakeholder perspective | Inventory sets                      | Process flows                       | Distribution networks               | Responsibility assignments          | Timing cycles                       | Motivation intentions               |
| Scope Contexts                | Executive               | List inventory types                | List process types                  | List distribution types             | List responsibility types           | List timing types                   | List motivation types               |
| Business Concepts             | Business management     | Business entities & relationships   | Business & input output             | Business location & connection      | Business role & work product        | Business interval & moment          | Business ends & means               |
| System Logic                  | Architect               | System entities & relationships     | System & input output               | System location & connection        | System role & work product          | System interval & moment            | System ends & means                 |
| Technology Physics            | Engineer                | Technology entities & relationships | Technology input & output           | Technology & location connection    | Technology role & work product      | Technology interval & moment        | Technology ends & means             |
| Tool components               | Technician              | Tool entities & relationships       | Tool input & output                 | Tool location & connection          | Tool role & work product            | Tool interval & moment              | Tool ends & means                   |
| Operations – Instance classes | Enterprise              | Operations entities & relationships |

## ENTERPRISE ARCHITECTURE - A FRAMEWORK™

|                                              | DATA<br><i>What</i>                                                                                                           | FUNCTION<br><i>How</i>                                                                                                       | NETWORK<br><i>Where</i>                                                                                                               | PEOPLE<br><i>Who</i>                                                                                                                   | TIME<br><i>When</i>                                                                                                               | MOTIVATION<br><i>Why</i>                                                                                            |                                              |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| SCOPE<br>(CONTEXTUAL)                        | List of Things Important to the Business<br> | List of Processes the Business Performs<br> | List of Locations in which the Business Operates<br> | List of Organizations Important to the Business<br> | List of Events Significant to the Business<br> | List of Business Goals/Strat<br> | SCOPE<br>(CONTEXTUAL)                        |
| Planner                                      | ENTITY = Class of Business Thing                                                                                              | Function = Class of Business Process                                                                                         | Node = Major Business Location                                                                                                        | People = Major Organizations                                                                                                           | Time = Major Business Event                                                                                                       | Ends/Means=Major Bus. Goal/Critical Success Factor                                                                  | Planner                                      |
| ENTERPRISE MODEL<br>(CONCEPTUAL)             | e.g. Semantic Model<br>                      | e.g. Business Process Model<br>             | e.g. Logistics Network<br>                           | e.g. Work Flow Model<br>                            | e.g. Master Schedule<br>                       | e.g. Business Plan<br>           | ENTERPRISE MODEL<br>(CONCEPTUAL)             |
| Owner                                        | Ent = Business Entity<br>Reln = Business Relationship                                                                         | Proc. = Business Process<br>I/O = Business Resources                                                                         | Node = Business Location<br>Link = Business Linkage                                                                                   | People = Organization Unit<br>Work = Work Product                                                                                      | Time = Business Event<br>Cycle = Business Cycle                                                                                   | End = Business Objective<br>Means = Business Strategy                                                               | Owner                                        |
| SYSTEM MODEL<br>(LOGICAL)                    | e.g. Logical Data Model<br>                  | e.g. "Application Architecture"<br>         | e.g. "Distributed System Architecture"<br>           | e.g. Human Interface Architecture<br>               | e.g. Processing Structure<br>                  | e.g., Business Rule Model<br>    | SYSTEM MODEL<br>(LOGICAL)                    |
| Designer                                     | Ent = Data Entity<br>Reln = Data Relationship                                                                                 | Proc. = Application Function<br>I/O = User Views                                                                             | Node = IS Function (Processor, Storage, etc)<br>Link = Line Characteristics                                                           | People = Role<br>Work = Deliverable                                                                                                    | Time = System Event Cycle<br>Process = Processing Cycle                                                                           | End = Structural Assertion<br>Means = Action Assertion                                                              | Designer                                     |
| TECHNOLOGY MODEL<br>(PHYSICAL)               | e.g. Physical Data Model<br>                 | e.g. "System Design"<br>                    | e.g. "System Architecture"<br>                       | e.g. Presentation Architecture<br>                  | e.g. Control Structure<br>                     | e.g. Rule Design<br>             | TECHNOLOGY CONSTRAINED MODEL<br>(PHYSICAL)   |
| Builder                                      | Ent = Segment/Table/etc.<br>Reln = Pointer/Key/etc.                                                                           | Proc.= Computer Function<br>I/O = Screen/Device Formats                                                                      | Node = Hardware/System Software<br>Link = Line Specifications                                                                         | People = User<br>Work = Screen Format                                                                                                  | Time = Execute Cycle<br>Component = Component Cycle                                                                               | End = Condition<br>Means = Action                                                                                   | Builder                                      |
| DETAILED REPRESENTATIONS<br>(OUT-OF-CONTEXT) | e.g. Data Definition<br>                   | e.g. "Program"<br>                        | e.g. "Network Architecture"<br>                    | e.g. Security Architecture<br>                    | e.g. Timing Definition<br>                   | e.g. Rule Specification<br>    | DETAILED REPRESENTATIONS<br>(OUT-OF-CONTEXT) |
| Sub-Contractor                               | Ent = Field<br>Reln = Address                                                                                                 | Proc.= Language Stmt<br>I/O = Control Block                                                                                  | Node = Addresses<br>Link = Protocols                                                                                                  | People = Identity<br>Work = Job                                                                                                        | Time = Interrupt Cycle<br>Machine = Machine Cycle                                                                                 | End = Sub-condition<br>Means = Step                                                                                 | Sub-Contractor                               |
| FUNCTIONING ENTERPRISE                       | e.g. DATA                                                                                                                     | e.g. FUNCTION                                                                                                                | e.g. NETWORK                                                                                                                          | e.g. ORGANIZATION                                                                                                                      | e.g. SCHEDULE                                                                                                                     | e.g. STRATEGY                                                                                                       | FUNCTIONING ENTERPRISE                       |



## THE ZACHMAN ENTERPRISE FRAMEWORK<sup>2</sup>™

|                             | WHAT                                                                        | HOW                                                                   | WHERE                                                                     | WHO                                                                  | WHEN                                                              | WHY                                                                |                                      |
|-----------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------|
| SCOPE CONTEXTS              | Inventory Identification<br>                                                | Process Identification<br>                                            | Network Identification<br>                                                | Organization Identification<br>                                      | Timing Identification<br>                                         | Motivation Identification<br>                                      | STRATEGISTS AS THEORISTS             |
| BUSINESS CONCEPTS           | Inventory Definition<br><br>Business Entity<br>Business Relationship        | Process Definition<br><br>Business Transform<br>Business Input        | Network Definition<br><br>Business Location<br>Business Connection        | Organization Definition<br><br>Business Role<br>Business Work        | Timing Definition<br><br>Business Cycle<br>Business Moment        | Motivation Definition<br><br>Business End<br>Business Means        | EXECUTIVE LEADERS AS OWNERS          |
| SYSTEM LOGIC                | Inventory Representation<br><br>System Entity<br>System Relationship        | Process Representation<br><br>System Transform<br>System Input        | Network Representation<br><br>System Location<br>System Connection        | Organization Representation<br><br>System Role<br>System Work        | Timing Representation<br><br>System Cycle<br>System Moment        | Motivation Representation<br><br>System End<br>System Means        | ARCHITECTS AS DESIGNERS              |
| TECHNOLOGY PHYSICS          | Inventory Specification<br><br>Technology Entity<br>Technology Relationship | Process Specification<br><br>Technology Transform<br>Technology Input | Network Specification<br><br>Technology Location<br>Technology Connection | Organization Specification<br><br>Technology Role<br>Technology Work | Timing Specification<br><br>Technology Cycle<br>Technology Moment | Motivation Specification<br><br>Technology End<br>Technology Means | ENGINEERS AS BUILDERS                |
| COMPONENT ASSEMBLIES        | Inventory Configuration<br><br>Component Entity<br>Component Relationship   | Process Configuration<br><br>Component Transform<br>Component Input   | Network Configuration<br><br>Component Location<br>Component Connection   | Organization Configuration<br><br>Component Role<br>Component Work   | Timing Configuration<br><br>Component Cycle<br>Component Moment   | Motivation Configuration<br><br>Component End<br>Component Means   | TECHNICIANS AS IMPLEMENTERS          |
| OPERATIONS INSTANCE CLASSES | Inventory Instantiation<br><br>Operations Entity<br>Operations Relationship | Process Instantiation<br><br>Operations Procedure<br>Operations Input | Network Instantiation<br><br>Operations Location<br>Operations Connection | Organization Instantiation<br><br>Operations Role<br>Operations Work | Timing Instantiation<br><br>Operations Cycle<br>Operations Moment | Motivation Instantiation<br><br>Operations End<br>Operations Means | WORKERS AS PARTICIPANTS              |
|                             | INVENTORY SETS                                                              | PROCESS TRANSFORMATIONS                                               | NETWORK NODES                                                             | ORGANIZATION GROUPS                                                  | TIMING PERIODS                                                    | MOTIVATION REASONS                                                 | Normative Projection on Version 2.01 |

Released  
October 2009



**\*Horizontal integration lines** are shown for example purposes only and are not a complete set. Composite, integrative relationships connecting every cell horizontally and vertically exist.

- ▶ To model an information system is – necessarily – to model the business recorded in that information system
- ▶ So, it was easy for Zachman (in the mid 1990s) to relabel the framework as being for “Enterprise Architecture”

## Not meant to be IS or IT-oriented



- ▶ "...the structure of the descriptive representations of buildings, airplanes and other complex industrial products."
- ▶ "Any appropriate approach, standard, role, method, technique, or tool may be placed in it."
- ▶ The schema can contain global plans as well as technical details, lists, and charts as well as natural language statements."
- ▶ Zachman expects completion of the cells to be determined by users of the framework.
- ▶ This freedom appeals to creative enterprise architects.

## But in practice, EA *is* IS oriented

- ▶ "To keep the business from disintegrating, the concept of information systems architecture is becoming less of an option and more of a necessity."
- ▶ Enterprise Architecture provides the blueprint, or architecture, for the organization's information infrastructure."
- ▶ 1987 paper: proposed framework as a holder of information system descriptions.
- ▶ 1992 paper by Zachman and Sowa: says the framework had been adopted by systems analysts and database designers.
- ▶ Framework users still tend be information system-oriented
- ▶ *Because EA is about business processes that create and use business data*

- ▶ there is a process that works from perfect simplicity to complex imperfection.
- ▶ the complex derives from the simple
- ▶ “all of "creation" emanates from the one in succeeding stages of lesser and lesser perfection. These stages occur throughout time as a constant process.”
- ▶ “the multiple cannot exist without the simple. The "less perfect" must, of necessity, "emanate", or issue forth, from the "perfect" or "more perfect".

(Wikipedia)

## But Zachman says: no sequence

- ▶ “the schema says nothing about the processes for developing viewpoints or conformant views, or the order in which they should be developed.”
- ▶ The levels are not stages in a process or levels of top-down decomposition
- ▶ Note also that the abstraction from bottom to top is by idealisation, not by composition.

- ▶ Zachman has been known to say:
- ▶ “One day you [or your enterprise] will regret not having completed the schema”.
- ▶ By completed he means that every cell should contain architecture description,
- ▶ every level of architecture description should be completed, and
- ▶ every level should be completed to the lowest possible level of detail.

# The “rules” of the Zachman Framework

## Rule 1:

Columns have no order

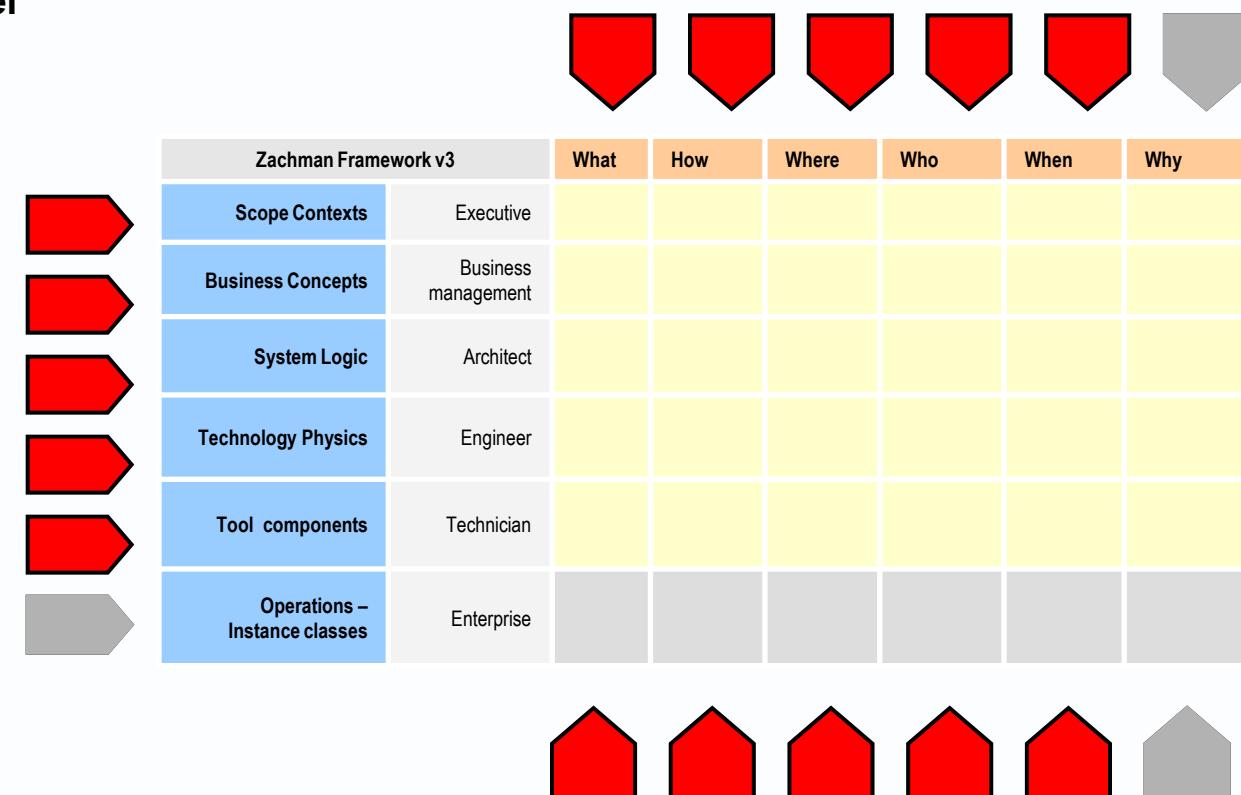
## Rule 2:

Each column has a simple, basic model

## Rule 3:

Basic model of each column is unique

## Rule 4:


Each row represents a distinct view

## Rule 5:

Each cell is unique

## Rule 6:

Combining the cells in one row forms a complete description from that view



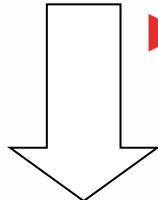
The diagram illustrates the Zachman Framework v3 grid. The columns are labeled: What, How, Where, Who, When, and Why. The rows represent different scope contexts: Executive, Business management, Architect, Engineer, Technician, and Enterprise. Each cell in the grid contains a red arrow pointing right, except for the Enterprise row which contains a grey arrow pointing right. The grid is composed of 36 cells (6 rows by 6 columns).

| Zachman Framework v3          | What                | How | Where | Who | When | Why |
|-------------------------------|---------------------|-----|-------|-----|------|-----|
| Scope Contexts                | Executive           |     |       |     |      |     |
| Business Concepts             | Business management |     |       |     |      |     |
| System Logic                  | Architect           |     |       |     |      |     |
| Technology Physics            | Engineer            |     |       |     |      |     |
| Tool components               | Technician          |     |       |     |      |     |
| Operations – Instance classes | Enterprise          |     |       |     |      |     |

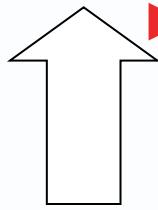
## Bottom up more accurate than top down?



- ▶ Five levels of description is a lot of description
- ▶ At the bottom are tested working systems
- ▶ Higher level descriptions are flawed and approximate “soft systems”.
- ▶ The most accurate abstract descriptions are produced by reverse engineering from the bottom upwards.
- ▶ In practice, nobody can maintain perfect traceability between levels - unless by automated reverse engineering.


# Simple cases are simple

- ▶ Given one facet of abstraction (idealisation)
- ▶ And abstraction in that direction only (not abstraction by composition)
- ▶ There could be 1 to 1 mappings all the way up and down a column


| Zachman Framework v3          |                         | What                                | E.g.                                 |
|-------------------------------|-------------------------|-------------------------------------|--------------------------------------|
| Idealisation                  | Stakeholder perspective | Inventory sets                      | E.g.                                 |
| Scope Contexts                | Executive               | List inventory types                |                                      |
| Business Concepts             | Business management     | Business entities & relationships   | 'Employee' as conceptual entity type |
| System Logic                  | Architect               | System entities & relationships     | 'Employee' as logical entity type    |
| Technology Physics            | Engineer                | Technology entities & relationships | 'Employee' as physical entity type   |
| Tool components               | Technician              | Tool entities & relationships       | 'Employee' as database table name    |
| Operations - Instance classes | Enterprise              | Operations entities & relationships | Employee role played by John Smith   |

- ▶ In the real world, 1 to 1 abstraction from real to ideal isn't practical
- ▶ There is and must be abstraction by composition and generalisation also

## In practice: abstraction can work both down and up



- ▶ Downwards: a lower model contains additional details specific to a particular “physical” realisation of its next higher model.



- ▶ Upwards: a higher model may contain additional details that are not selected for realisation in the next lower model.
- ▶ So a downward refinement step may be only a “partial realisation”
  - It realises only part of a higher level model
  - And not all the way to the run-time system

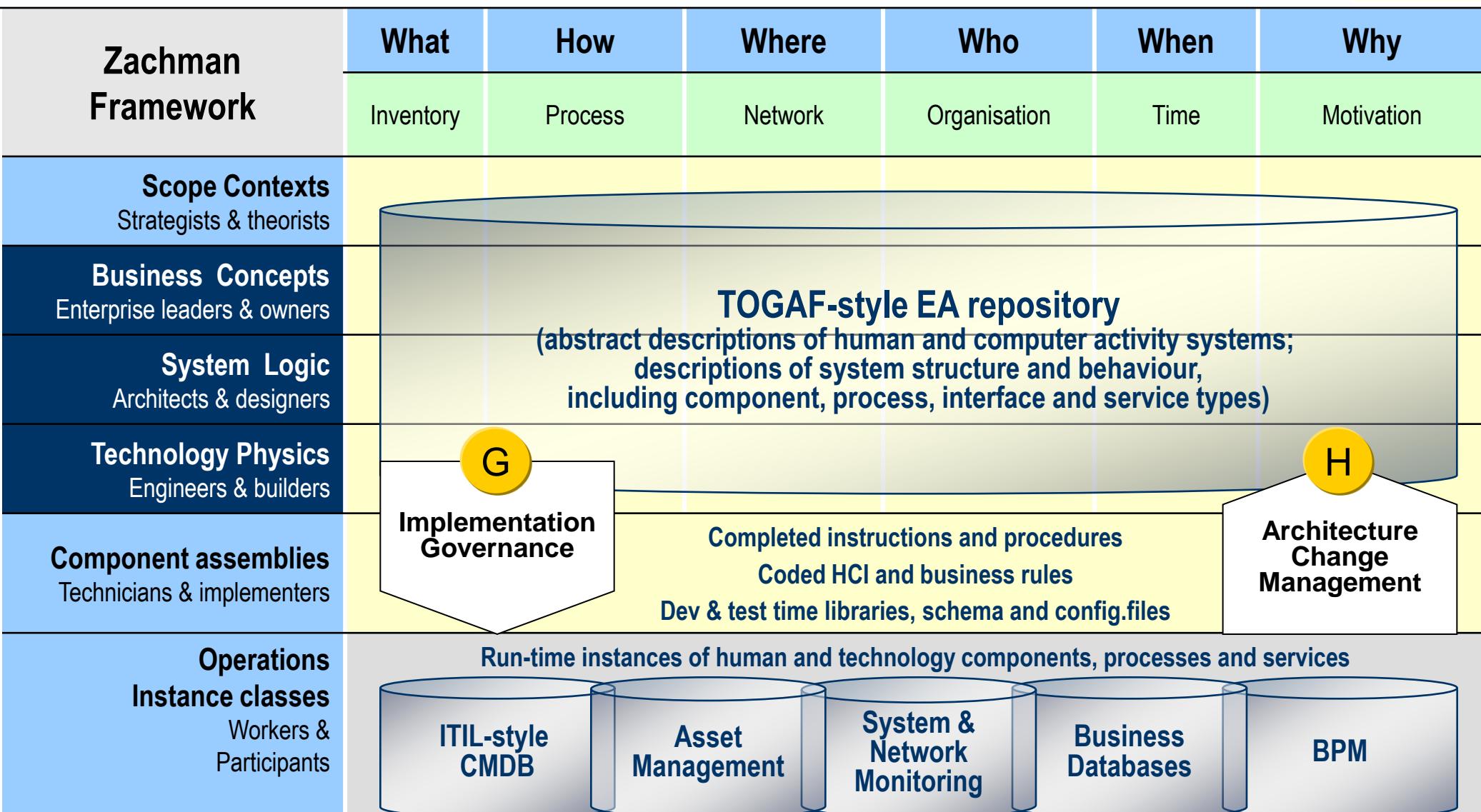
## In practice: a lower row might abstract from a higher one

- ▶ Can we fully realise a higher row in a lower row?
- ▶ That is, we study each excruciating detail of a higher row artefact and refine that detail (somehow) in one or more lower row artefacts?
- ▶ In practice, the highest level conceptual model may be only selectively realised in lower rows.

- ▶ The transformation of a description from one row to the next can be:
  - Multi-faceted – any or all of 5 or 6 different flavours of abstraction may be used at once.
  - Multi-directional – abstraction of one kind in one direction and refinement of the same or another kind in the opposite direction.
  - Many-to-many – there can be N-to-N cardinalities between types in adjacent layers.
- ▶ The result: a combinatorial explosion of the abstraction-refinement relations that can exist between artefacts in adjacent rows

- ▶ Practitioners don't distinguish abstraction types
- ▶ Their row to row transformations can be
  - multi-faceted,
  - multi-directional and
  - many-to-many
- ▶ And they don't maintaining full traceability
- ▶ Perhaps that loose interpretation of the ZF is the best we can hope for?

# How many possible 2D frameworks are possible?


- ▶ Make your own
- ▶ Perm any 2 of the 5 dimensions below.

| Focus        | Time         | Abstraction by... |                    |                |
|--------------|--------------|-------------------|--------------------|----------------|
| Domain       | State        | Composition       | Idealisation       | Generalisation |
| Business     | Now          | High level        | Ideal              | Generic        |
| Business     | Baseline     | Enterprise        | Conceptual         | Foundation     |
| Data         | Transition 1 | Segment           | Logical            | Common System  |
| Applications | Transition n | Solution          | Physical           | Industry       |
| Technologies | Target       | Detailed Design   | Deployed Solutions | Organisation   |
| Technology   | Future       | Low level         | Real               | Specific       |

## Having said all that

- ▶ If you like the Zachman Framework, then
- ▶ you can with more or less difficulty populate the cells with artifacts mentioned in other EA frameworks
- ▶ Some ideas follow
- ▶ **NONE OF WHAT FOLLOWS IS NECESSARILY IN ACCORD WITH WHAT ZACHMAN WOULD DO**

# Scopes of EA documentation in Zachman and TOGAF





# The TOGAF artifacts might be roughly mapped to ZF

| Phase A: Architecture Vision artifacts  |                                      | Phase E Opportunities and Solutions        |                                           |
|-----------------------------------------|--------------------------------------|--------------------------------------------|-------------------------------------------|
| Stakeholder Map Matrix                  |                                      |                                            | Project Context Diagram                   |
| Value Chain Diagram                     |                                      |                                            | Benefits Diagram                          |
| Solution Concept Diagram                |                                      |                                            |                                           |
| Phase B Business Architecture artifacts | Phase C Data Architecture artifacts  | Phase C Application Architecture artifacts | Phase D Technology Architecture artifacts |
| Organization/Actor Catalog              | Data Entity/Data Component Catalog   | Application Portfolio Catalog              | Technical Reference Model                 |
| Driver/Goal/Objective Catalog           |                                      | Interface Catalog                          | Technology Standards Catalog              |
| Role Catalog                            |                                      |                                            | Technology Portfolio Catalog              |
| Business Service/Function Catalog       |                                      |                                            |                                           |
| Location Catalog                        |                                      |                                            |                                           |
| Process/Event/Control/Product Catalog   |                                      |                                            |                                           |
| Contract/Measure Catalog                |                                      |                                            |                                           |
| Business Interaction Matrix             | Data Entity/Business Function Matrix | System/Organization Matrix                 | System/Technology Matrix                  |
| Actor/Role Matrix                       | System/Data Matrix                   | Role/System Matrix                         |                                           |
|                                         |                                      | System/Function Matrix                     |                                           |
|                                         |                                      | Application Interaction Matrix             |                                           |
| Business Footprint Diagram              | Class Diagram                        | Application Communication Diagram          | Environments and Locations Diagram        |
| Business Service/Information Diagram    | Data Dissemination Diagram           | Application and User Location Diagram      | Platform Decomposition Diagram            |
| Functional Decomposition Diagram        | Data Security Diagram (or matrix)    | System Use-Case Diagram                    | Processing Diagram                        |
| Product Lifecycle Diagram               | Data Migration Diagram               | Enterprise Manageability Diagram           | Networked Computing/Hardware Diagram      |
| Goal/Objective/Service Diagram          | Data Lifecycle Diagram               | Process/System Realization Diagram         | Communications Engineering Diagram        |
| Business Use-Case Diagram               | Class Hierarchy Diagram              | Software Engineering Diagram               |                                           |
| Organization Decomposition Diagram      |                                      | Application Migration Diagram              |                                           |
| Process Flow Diagram                    |                                      | Software Distribution Diagram              |                                           |
| Event Diagram                           |                                      |                                            |                                           |

# A mapping of TOGAF artefacts to the Zachman Framework (not including artefacts that obviously span more than one cell)



|                                                                | What                                                                                  | How                                                                               | Where                                                                                                       | Who                                                                                             | When                                                                        | Why                                                  |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------|
|                                                                | Inventory                                                                             | Process                                                                           | Network                                                                                                     | Organisation                                                                                    | Time                                                                        | Motivation                                           |
| Scope<br>Contexts<br>Strategists<br>& theorists                | Business<br>Service/Function Ctlg                                                     | Value Chain dgrm                                                                  | Location Ctlg                                                                                               | Functional<br>Decomposition dgrm                                                                | Event dgrm                                                                  | Driver/Goal/Objective Ctlg<br>Stakeholder Map Matrix |
| Business<br>Concepts<br>Enterprise<br>leaders<br>& owners      | Business data model                                                                   | Business Use-Case dgrm<br>Process/Event/Control/Product Ctlg<br>Process Flow dgrm | Business Interaction Matrix                                                                                 | Organization<br>Decomposition dgrm<br>Role Ctlg<br>Organization/Actor Ctlg<br>Actor/Role Matrix | Product Lifecycle<br>dgrm                                                   | Goal/Objective/Service<br>dgrm                       |
| System<br>Logic<br>Architects<br>& designers                   | Application Portfolio<br>Ctlg<br>Interface Ctlg<br>Data Entity/Data<br>Component Ctlg | System Use-Case dgrm<br>Process/System<br>Realization dgrm                        | Application & User Location dgrm<br>Application Interaction Matrix<br>Application Communication dgrm        |                                                                                                 | Application<br>Migration dgrm<br>Data Migration dgrm<br>Data Lifecycle dgrm | Project Context dgrm<br>Benefits dgrm                |
| Technology<br>Physics<br>Engineers<br>& builders               | Technology Portfolio<br>Ctlg                                                          |                                                                                   | Networked Computing/Hardware<br>dgrm<br>Communications Engineering<br>dgrm<br>Environments & Locations dgrm |                                                                                                 |                                                                             | Technical Reference<br>Model                         |
| Component<br>assemblies<br>Technicians &<br>implementers       | Class dgrm                                                                            | Software Engineering<br>dgrm                                                      | Software Distribution dgrm<br>Processing dgrm<br>Platform Decomposition dgrm                                |                                                                                                 |                                                                             |                                                      |
| Operations<br>Instance<br>classes<br>Workers<br>& participants |                                                                                       |                                                                                   |                                                                                                             |                                                                                                 |                                                                             |                                                      |

# Want to try it yourself? Fill out the ZF from the table

|                                  |                                   |                                          |
|----------------------------------|-----------------------------------|------------------------------------------|
| Active network                   | Application availability          | Application distribution & communication |
| Application use cases & services | Business data model               | Business entities                        |
| Business events                  | Business goals & principles       | Business locations                       |
| Business logistics               | Business objectives & policies    | Business org units                       |
| Business process flows           | Business processes                | Business requirements & rules            |
| Business schedule                | Data & time controls              | Data in data stores                      |
| Database schema                  | Executing processes               | Hardware nodes & platform apps           |
| HCI                              | Identity & access controls        | Implemented strategy                     |
| Logical data models              | Network architecture              | Operating schedule                       |
| Physical data models             | Platform services                 | Program code                             |
| Roles & workflows                | Rule design                       | Rule details & configuration             |
| Running schedule                 | User devices & presentation layer | Working actors                           |

|                                                       | What      | How     | Where   | Who          | When | Why        |
|-------------------------------------------------------|-----------|---------|---------|--------------|------|------------|
|                                                       | Inventory | Process | Network | Organisation | Time | Motivation |
| Scope Contexts<br>Strategists & theorists             |           |         |         |              |      |            |
| Business Concepts<br>Enterprise leaders & owners      |           |         |         |              |      |            |
| System Logic<br>Architects & designers                |           |         |         |              |      |            |
| Technology Physics<br>Engineers & builders            |           |         |         |              |      |            |
| Component assemblies<br>Technicians & implementers    |           |         |         |              |      |            |
| Operations Instance classes<br>Workers & participants |           |         |         |              |      |            |

# A possible answer?

|                                                                        | What                 | How                              | Where                                    | Who                               | When                     | Why                            |
|------------------------------------------------------------------------|----------------------|----------------------------------|------------------------------------------|-----------------------------------|--------------------------|--------------------------------|
|                                                                        | Inventory            | Process                          | Network                                  | Organisation                      | Time                     | Motivation                     |
| <b>Scope Contexts</b><br>Strategists & theorists                       | Business entities    | Business functions & processes   | Business locations                       | Business org units                | Business events          | Business goals & principles    |
| <b>Business Concepts</b><br>Enterprise leaders & owners                | Business data model  | Business process flows           | Business logistics                       | Roles & workflows                 | Business schedule        | Business objectives & policies |
| <b>System Logic</b><br>Architects & designers                          | Logical data models  | Application use cases & services | Application distribution & communication | HCI                               | Application availability | Business requirements & rules  |
| <b>Technology Physics</b><br>Engineers & builders                      | Physical data models | Platform services                | Hardware nodes & platform apps           | User devices & presentation layer | Operating schedule       | Rule design                    |
| <b>Component assemblies</b><br>Technicians & implementers              | Database schema      | Program code                     | Network architecture                     | Identity & access controls        | Data & time controls     | Rule details & configuration   |
| <b>Operations</b><br><b>Instance classes</b><br>Workers & participants | Data in data stores  | Executing processes              | Active network                           | Working actors                    | Running schedule         | Implemented strategy           |

## Plotinus may be discomfited to find that

- ▶ “the universe
- ▶ having started in a hugely complex big bang event – and
- ▶ being now complex enough to sustain information processing
- ▶ will probably end in a simple state called the big freeze.
  
- ▶ “A related scenario is heat death:
- ▶ the universe goes to a state of maximum entropy in which
- ▶ everything is evenly distributed, and
- ▶ there are no gradients —
- ▶ which are needed to sustain information processing,
- ▶ one form of which is life."
- ▶ (Wikipedia).