Avancier

Avancier Methods (AM)
TECHNIQUES

Communication models

It is illegal to copy, share or show this document
(or other document published at http://avancier.co.uk)
without the written permission of the copyright holder

Copyright Avancier Limited

]
]
Communication modelling techniques I o

— Avancier

» |What follows are only a few notes on modelling
notations and issues - not a treatise on the topic

Copyright Avancier Limited

Using UML to model software structure and behaviour

One
Class diagram

Structural model showing
Module types (classes)

Relationships between modules

UML Class Diagram

Depot

Several

Avancier

Interaction (sequence) diagrams

Behavioural models showing

How modules (objects) cooperate to
perform a process

Customer| | Product

Sale

Payment

UML Object Interaction Diagram

V

a:Sale

a:Product | | a:Depot

A 4

Copyright Avancier Limited

]
]
A simple class diagram I .

Avancier

: Hotel
Sales
/ Hotel Chain 2 R ales
User Interface .
Window / Customer Sales
Agent
Some classes look
after data entities
defined in the LDM
Some classes
look after Ul
objects A class may look Booking
after a complex data
structure Notice

» System structure
decomposed into
small modules

Some cIasse§
look after sending
messages

Copyright Avancier Limited

How objects cooperate to perform a higher level process

Avancier

Object W\ Why are these objects
of| Class ~—=-] Marriot MarriotNewark higher than the Ul window?
Hotel Chain Hotel D
window | |
User Interface | | lteration Whﬁ,ﬁg ese]
bookRoom (dates): voi%i I
bookRoom (dateSE v!)id
I *[for each day] isRoom:=free(): boole
Message lisRoom] | aBooking
Booking ot
aNotice
— ~| Notice
sequence
| |
L | |
I | Object
Deletion Operation lifeline Object lifeline |} Instantiation
! Activation bar || | I

Copyright Avancier Limited

L
Example drawn from somewhere on the internet]
| | Avancier
aChain aHotel
object »| HotelChain Hotel
window

Liserinterface

makeReseration(wvaoid

[C==
4:.\ N fE== Witwﬂﬁm
for each day] isRoom:=availablef:hoolean

tnakeReserationdvoid |
|

conditi
.'I‘5r on aReservation
[i=Room] —_
Feservation
—h.
aNotice
Canfirmation
4“
o creation Z__
activation bar T
-~
mte\ u
|| If 5 roorm is available for

I
each day of the stay, make |
areseration and send a |
I
I

¢« deletion [
|
|

— lifeline ——»
canfirmatian,

Copyright Avancier Limited

]
]
Data flow in a UML sequence diagram I .

— Avancier

1. Request-reply means the client not only waits but also freezes

Operation (arg): reply
= Synchronous

s Asynchronous 2Reralon (Messady rire and Forget

m Strictly speaking, all human interaction is fire and forget
m Even if, in practice, you mostly wait for a reply

Copyright Avancier Limited

]
]
Architects use of sequence diagrams I o

Avancier

1. More sketch than detailed software design
2. More coarse-grained components than small OOP classes
3. More asynchronous inter-component communication

Operation (arg): reply
m Synchronous &~ — — — — — > Request-Reply

Operation (messag .
m Asynchronous 3 Fire and Forget

m Which means you cannot show operation life times! —>

Copyright Avancier Limited

.
: :]
Process flow in a UML sequence diagram I L

— Avancier

:Order Entry Controller :Order :Order Line :Customer :Product

orderClosure (OEdNum)ﬁ)rderValue

»
>

checkStatus (Cust Id): Status {]

: [all order line

»

UJ
Rl

sequence close ()
. itemValue

A 4

checkStock (quantity): Level

A 4

[enoughStock] remove (Quantity):

checkCredit (OrderValue): CreditWorrthy

n

Copyright Avancier Limited

: : 1
The same process flow in an Event Impact Diagram I]
(Effect Correspondence Diagram in SSADM) .

Avancier

» Nodes: all the entities affected by an event
» Lines: 1-to-1 navigation from one entity to another entity or set of

entities
:Order Entry Controller :Customer

1.1: checkStatus ():

1.3 checkCredit (orderValue): creditWorthy
:Order » Set of Order Lines

1. orderClosure (OrderNum): orderValue
:Order Line * » :Product
1.2 * [all order lines] close (): itemValue 1.2.1 checkStock (quantity):

1.2.2 [enoughStock] remove (quantity)

Copyright Avancier Limited

An Event Impact Diagram I =

(Effect Correspondence Diagram in SSADM)]
— Avancier
» This notation shows
the effect one event - -~ What JSD would call a ‘context fter
haS one or more OvenD A gatekeper object at the en_trypoint of
t|t|es ven-voor the event, not updated by this event
|Oven-Door * SW< S
» The arrows are one-to-| Oven-TBP
one correspondences | T
g : 9'"':\ 0y . \zé
' (ext%;%nc_:gEIan) (s?a\lfteggcl;Eizg) |--. (s(t)alvr(tagg_olgmg)
» IF the entities are ;5
coded as separate | 1
objects, THEN it is
likely the arrows turn

INto messages

Copyright Avancier Limited

From Event Impact Diagram to Interaction Diagram

— Avancier
Button Push
Rl ;:gWhatJSDwouldcalla'contextﬁlter’
A gatekeper object at the entry point of
Oven-Door the event, not updated by this event
'Oven-Door * SW< S
v Oven Door Oven Door e
0 |
Oven-TBP : Oven-TBP L. g Oven-Light [
(extend cooking) || (start cooking) | = | (start cooking) |[:
i3k P"»
4 Invoke§L|ghtO and Fail If §Light On Fails
15 :Set Oven-TBP " S
_6 Fail Unless Oven-TBP ' SV =" idle
Ul Layer Button Push Door Oven TBP Light

L 1

Button Push

[Door closed] [Cooking]

1. Set Timer = 1 Minute
2. Add | Minute to Timer
3. Energise Power Tube
>|:‘E| 4. Invoke $Light on
5 Set Oven TBP SV = Cooking
6. Fail unless Oven TBP SV = Idle

Copyright Avancier Limited

