
Copyright Avancier Limited

Avancier

Avancier Methods (AM)
TECHNIQUES

Communication models

It is illegal to copy, share or show this document
(or other document published at http://avancier.co.uk)

without the written permission of the copyright holder

Copyright Avancier Limited

Avancier
Communication modelling techniques

►What follows are only a few notes on modelling

notations and issues - not a treatise on the topic

Copyright Avancier Limited

Avancier
Using UML to model software structure and behaviour

One
Class diagram

Structural model showing
Module types (classes)
Relationships between modules

Several
Interaction (sequence) diagrams

Behavioural models showing
How modules (objects) cooperate to

perform a processUML Class Diagram

Customer Product

Sale

Depot

Payment

UML Object Interaction Diagram

a:Sale a:Product a:Depot

Copyright Avancier Limited

Avancier
A simple class diagram

► System structure
decomposed into
small modules

Sales
Agent

Customer

Sales
Partner

Hotel Chain
Hotel

& Rooms

User Interface
Window

Booking

Notice

Some classes look
after data entities
defined in the LDM

Some classes
look after UI
objects

Some classes
look after sending

messages

A class may look
after a complex data

structure

Copyright Avancier Limited

Avancier
How objects cooperate to perform a higher level process

Why are these
lower?

Why are these objects
higher than the UI window?Marriot

Hotel Chain
MarriotNewark

Hotel

bookRoom (dates): void
bookRoom (dates): void

*[for each day] isRoom:=free(): boolean

X

[isRoom]

Operation lifeline
Activation bar

Object lifeline

Message

Object
[of] Class

Iteration

Deletion

window
User Interface

aBooking
Booking

aNotice
Notice

sequence

Object
Instantiation

Copyright Avancier Limited

Avancier
Example drawn from somewhere on the internet

Copyright Avancier Limited

Avancier
Data flow in a UML sequence diagram

1. Request-reply means the client not only waits but also freezes

■ Synchronous Request-Reply

■ Asynchronous Fire and Forget

■ Strictly speaking, all human interaction is fire and forget

■ Even if, in practice, you mostly wait for a reply

Operation (message)

Operation (arg): reply

Copyright Avancier Limited

Avancier
Architects use of sequence diagrams

1. More sketch than detailed software design

2. More coarse-grained components than small OOP classes

3. More asynchronous inter-component communication

■ Synchronous Request-Reply

■ Asynchronous Fire and Forget

■ Which means you cannot show operation life times!

Operation (message)

Operation (arg): reply

Copyright Avancier Limited

Avancier

Process flow in a UML sequence diagram

:Order Entry Controller :Order :Order Line :Product:Customer

iteration

sequence

orderClosure (OrdNum): orderValue

checkStock (quantity): Level

checkStatus (Cust Id): Status

[enoughStock] remove (Quantity):

checkCredit (OrderValue): CreditWorthy

* [all order lines]

close ():

itemValue

Copyright Avancier Limited

Avancier

The same process flow in an Event Impact Diagram
(Effect Correspondence Diagram in SSADM)

► Nodes: all the entities affected by an event

► Lines: 1-to-1 navigation from one entity to another entity or set of
entities

:Order Entry Controller

:Order

1: orderClosure (OrderNum): orderValue

Set of Order Lines

1.2 * [all order lines] close (): itemValue

:Product

1.2.1 checkStock (quantity):

1.2.2 [enoughStock] remove (quantity)

1.1: checkStatus ():

1.3 checkCredit (orderValue): creditWorthy

:Customer

:Order Line *

Copyright Avancier Limited

Avancier

An Event Impact Diagram
(Effect Correspondence Diagram in SSADM)

► This notation shows
the effect one event
has one or more
entities

► The arrows are one-to-
one correspondences

► IF the entities are
coded as separate
objects, THEN it is
likely the arrows turn
into messages

Button Push

Oven-Light
(start cooking)

Operations List

1 Set Timer for 1 minute
2 Add 1 minute to Timer
3 Energise Power tube
4 Invoke §Light On, and Fail If §Light On Fails

Oven-TBP
(start cooking)

o

5 Set Oven-TBP ` SV = ' cooking'

Oven-TBP
(extend cooking)

Oven-TBP ` SV = ' cooking'

o

Oven-TBP
Oven-Door
(no effect)

Oven-Door ` SV = 'open'

o

Oven-Door

431

6 Fail Unless Oven-TBP ` SV = ' idle'

6 52

Oven-Door
(effect)

o

What JSD would call a 'context filter'

A gatekeper object at the entry point of

the event, not updated by this event

Copyright Avancier Limited

Avancier
From Event Impact Diagram to Interaction Diagram

Button Push Door Oven TBP LightUI Layer

Button Push

6
1
3
5

[Door closed]

4

2

[Cooking]
1. Set Timer = 1 Minute

2. Add I Minute to Timer

3. Energise Power Tube

4. Invoke $Light on

5. Set Oven TBP SV = Cooking

6. Fail unless Oven TBP SV = Idle

Button Push

Oven-Light
(start cooking)

Operations List

1 Set Timer for 1 minute
2 Add 1 minute to Timer
3 Energise Power tube
4 Invoke §Light On, and Fail If §Light On Fails

Oven-TBP
(start cooking)

o

5 Set Oven-TBP ` SV = ' cooking'

Oven-TBP
(extend cooking)

Oven-TBP ` SV = ' cooking'

o

Oven-TBP
Oven-Door
(no effect)

Oven-Door ` SV = 'open'

o

Oven-Door

431

6 Fail Unless Oven-TBP ` SV = ' idle'

6 52

Oven-Door
(effect)

o

What JSD would call a 'context filter'

A gatekeper object at the entry point of

the event, not updated by this event

