
Avancier

The BPM dream

A slide show based on two papers
Mapping BPMN to BPEL

http://eprints.qut.edu.au/5266/1/5266.pdf

Ouyiang, Dumas, van der Aalst and ter Hofstede

The Seven Fallacies of Business Process Execution

http://www.infoq.com/articles/seven-fallacies-of-bpm

Jean-Jacques Dubray

Training at http://avancier.website

http://eprints.qut.edu.au/5266/1/5266.pdf
http://www.infoq.com/articles/seven-fallacies-of-bpm
http://www.infoq.com/articles/seven-fallacies-of-bpm
http://www.infoq.com/articles/seven-fallacies-of-bpm
http://www.infoq.com/articles/seven-fallacies-of-bpm
http://www.infoq.com/articles/seven-fallacies-of-bpm
http://www.infoq.com/articles/seven-fallacies-of-bpm
http://www.infoq.com/articles/seven-fallacies-of-bpm

Avancier
Business Process Management (BPM)

► BPM is a discipline for building, maintaining and evolving

enterprise systems on the basis of business process models.

► A business process model or diagram is a flow chart-style

representation of activities leading from a start event to result or

goal, e.g.

■ processing a customer request or complaint,

■ satisfying a regulatory requirement

■ etc.

Training at http://avancier.website

Avancier
The Business Process Management dream

► Given

■ Business Process Modelling Notation (BPMN)

■ Business Process Execution Language (BPEL)

► The dream is

■ analysts use BPMN to visualize business processes and

■ developers transform the visualizations to BPEL for execution.

Training at http://avancier.website

Avancier
BPMN core elements only

► Objects (events, tasks and gateways)

► Flows

Training at http://avancier.website

Events

Gateways: control divergence and convergence

Tasks
service,
receive,
send,

user, script,
manual, &
reference.

Flow (sequence)

Avancier
Business Process Diagram (BPD)

► A BPD is a flowchart

► Made of BPMN elements.

Training at http://avancier.website

Process
questionnaire

Send
questionnaire

Check
processing

Study
complaint

Evaluate

Register Archive +

X

X

X X X

+

Returned

questionnaire

OK

Done

Avancier
Business Process Execution Language for Web Services (BPEL)

► BPEL is an XML-based language that allows Web Services to

interconnect and share data..

► Basic activities = atomic actions such as:
■ invoke, invoking an operation on a Web service;

■ receive, waiting for a message from a partner;

■ exit, terminating the entire Web Service instance;

■ empty, doing nothing

► Structured activities connect basic activities:
■ sequence, for defining an execution order;

■ flow, for parallel routing;

■ switch, for conditional routing;

■ pick, for race conditions based on timing or external triggers;

■ while, for structured looping; and

■ scope, for grouping activities into blocks to which event, fault and compensation

handlers may be attached.

Training at http://avancier.website

Avancier
http://docs.jboss.com/jbpm/bpel/v1.1/userguide/tutorial.hello.html

Training at http://avancier.website

► Hello world example

<process name="HelloWorld" targetNamespace="http://jbpm.org/examples/hello"
 xmlns:tns="http://jbpm.org/examples/hello"
 xmlns:bpel="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/">

 <partnerLinks>
 <!-- establishes the relationship with the caller agent -->
 <partnerLink name="caller" partnerLinkType="tns:Greeter-Caller" myRole="Greeter" />
 </partnerLinks>

 <variables>
 <!-- holds the incoming message -->
 <variable name="request" messageType="tns:nameMessage" />
 <!-- holds the outgoing message -->
 <variable name="response" messageType="tns:greetingMessage" />
 </variables>

 <sequence name="MainSeq">

 <!-- receive the name of a person -->
 <receive name="ReceiveName" operation="sayHello" partnerLink="caller"
 portType="tns:Greeter" variable="request" createInstance="yes" />

 <!-- compose a greeting phrase -->
 <assign name="ComposeGreeting">
 <copy>
 <from expression="concat('Hello, ', bpel:getVariableData('request', 'name'), '!')" />
 <to variable="response" part="greeting" />
 </copy>
 </assign>

 <!-- send greeting back to caller -->
 <reply name="SendGreeting" operation="sayHello" partnerLink="caller"
 portType="tns:Greeter" variable="response" />

 </sequence>

</process>

Avancier
http://www.jot.fm/issues/issue_2007_10/paper13/images/figure11.gif

UML Activity Diagram BPEL description.

Training at http://avancier.website

Avancier

Mapping BPMN to BPEL
http://eprints.qut.edu.au/5266/1/5266.pdf

Ouyiang, Dumas, van der Aalst and ter Hofstede

A slide show based on the paper above

Training at http://avancier.website

http://eprints.qut.edu.au/5266/1/5266.pdf

Avancier
A process for mapping BP diagrams to BPEL

“To map a BPD onto (readable) BPEL code,

we need to transform a graph structure into a block structure.

For this purpose, we [de]compose a BPD into components.

A component is a subset of the BPD that has one entry and one exit point.

We then try to map components onto suitable BPEL blocks”.

http://eprints.qut.edu.au/5266/1/5266.pdf

Ouyiang, Dumas, van der Aalst and ter Hofstede

Training at http://avancier.website

http://eprints.qut.edu.au/5266/1/5266.pdf

Avancier

Handle complaint

Address complaint

Research complaint

Process complaint

Deal with response

Process composition / decomposition example

Training at http://avancier.website

Process
questionnaire

Send
questionnaire

Check
processing

Study
complaint

Evaluate

Register Archive +

X

X

X X X

+

Returned

questionnaire

OK

Done

Avancier

Deal with response

Complaint handling – 1st level composition

► Create components with one entry and exit point

■ E.g. Deal with response

Training at http://avancier.website

Process
questionnaire

Send
questionnaire

Check
processing

Study
complaint

Evaluate

Register Archive +

X

X

X X X

+

Returned

questionnaire

OK

Done

Avancier

Research complaint

Process complaint

Deal with response

Study and evaluate

Complaint handling – 2nd level composition

► Higher-level components with one entry and exit point
■ “Research complaint” is a plain “sequence” in BPEL

■ “Process complaint” (being cyclic) is a more complex “scope” in BPEL

Training at http://avancier.website

Send
questionnaire

Check
processing

Register Archive +

X X X X

+

OK

Done

Avancier

Handle complaint

Address complaint

Research complaint

Process complaint

Complaint handling - 3rd and 4th level composition

► “Handle complaint” is a plain “sequence” in BPEL

■ “Address complaint” is composed of two parallel components in BPEL

● “Research complaint” is a plain “sequence” in BPEL

● “Process complaint” (being cyclic) is a more complex “scope” in BPEL

Training at http://avancier.website

Register Archive + +

Avancier
A BPD represented as a hierarchical structure of BPEL

<process name="complaint handling">

<sequence name=“Handle complaint ">

<invoke name="register">

<flow name=“Address complaint "> ... </flow>

<invoke name="archive">

</sequence>

</process>

Training at http://avancier.website

<flow name=" Address complaint ">

<sequence name=“Research complaint "> ... </sequence>

<scope name=“Process complaint "> ... </scope>

</flow>

Handle complaint

Address complaint

Research complaint

Process complaint

Register Archive + +

Avancier
Mapping BP Diagrams to BPEL

► Given a component of a process,

with one entry and exit point

► If it is well-structured, then it can be

directly mapped onto BPEL

structured activities.

► Else if it is acyclic, it may be

mappable to control link-based

BPEL code.

► Else, the mapping of the

component will rely on BPEL event

handlers via the usage of event-

action rules >>

► [Read the paper for more]

Training at http://avancier.website

Avancier
Note

► The mapping above uses only some BPMN constructs

► It excludes

■ exception handling

■ OR-joins

■ other advanced constructs

Training at http://avancier.website

Avancier

The Seven Fallacies of Business Process Execution
http://www.infoq.com/articles/seven-fallacies-of-bpm

Jean-Jacques Dubray

A slide show based on the paper above

Training at http://avancier.website

http://www.infoq.com/articles/seven-fallacies-of-bpm
http://www.infoq.com/articles/seven-fallacies-of-bpm
http://www.infoq.com/articles/seven-fallacies-of-bpm
http://www.infoq.com/articles/seven-fallacies-of-bpm
http://www.infoq.com/articles/seven-fallacies-of-bpm
http://www.infoq.com/articles/seven-fallacies-of-bpm
http://www.infoq.com/articles/seven-fallacies-of-bpm

Avancier

► Analyst’s model processes from the human actor’s viewpoint.

► It usually impossible and unnecessary to prescribe human actions as

precisely and completely as computer actions.

► Humans often interpret and adapt the logic and steps of the process

► (Analysts used to be taught to model the life histories of entities in data

models more formally, but this is uncommon nowadays.)

1: Analysts don’t model processes from a system’s viewpoint

Training at http://avancier.website

Avancier
2: Business users cannot easily learn BPMN and all its features.

► Business users, analysts, and architects use only small selection of

the constructs created by standard writers.

► Not even this much?

► [System modelling languages like BPMN, UML and ArchiMate are

abused as much as they are used]

Training at http://avancier.website

Avancier

3: Business analysts are unable to create executable solutions
from process models

► [This has been a pipe dream since the days of the common

business-oriented language (COBOL) in the 1970s.

► The closest we have to system generation tools are 4GLs based on

■ A data model

■ Forms for entering and displaying data

■ Some way of attaching business rules to data elements.

► Where executable solutions are to be produced, agilists may argue

that programmers should be doing the business analysis.]

Training at http://avancier.website

Avancier

4: There is no silver bullet

► No magical BPMS can create solutions directly from business

analysis diagrams without the need to

■ Design all exception handling (80% of the complexity?)

■ Develop integration with existing systems,

■ Change existing systems of record,

■ Do Quality Assurance.

Training at http://avancier.website

Avancier

5: Business Process Execution is not best centralized

► There is only a loose coupling between

■ Less formal Business Process Models (to which BMPN is suited)

■ More formal Entity/Resource Lifecycles (to which BPEL is suited)

► As illustrated by Jean-Jacques Dubray in the following figures

■ Figure 1. The Job Application Data Model

■ Figure 2. The Job Application Lifecycle

■ Figure 3. The Job Application Web Service

■ Figure 4. The Implementation of the Job Application Web Service

■ Figure 5. The Job Application Process

Training at http://avancier.website

Avancier
Figure 1. The Job Application Data Model

Training at http://avancier.website

► [For me, this is an odd data model

► The kind drawn by programmers

rather than data analysts.

► Where is the primary key of

Application?

► Where is the state variable of the

Application life cycle?

► The cardinalities look questionable]

Avancier
Figure 2. The Job Application Lifecycle

► The business logic of a data

entity lifecycle changes rarely

► The business processes that

interact with it might change

often.

► So, how to implement this Job

Application Lifecycle in

software?

Training at http://avancier.website

Avancier
Figure 3. The Job Application Web Service

► This Web Service

implements all the

actions that result in a

state transition in the

data entity lifecyle

Training at http://avancier.website

Avancier
Figure 4. The Implementation of the Job Application Web Service

► The BPEL implementation would look like this (using a vendor neutral BPEL notation):

Training at http://avancier.website

Avancier
Separating business process from data entity life cycle

“[The] Web Services [implements] the lifecycle of a Job Application

independent of processes and activities that may advance the state of

the job application.

A process is the set of activities that advance its state.

Resource Lifecycles and processes are decoupled

I don't think anyone can argue with that, yet everyone is trying to

model and implement processes without a clear understanding of the

resource lifecycles, they are more or less "built-in" the process model.”

http://www.infoq.com/articles/seven-fallacies-of-bpm

Training at http://avancier.website

http://www.infoq.com/articles/seven-fallacies-of-bpm
http://www.infoq.com/articles/seven-fallacies-of-bpm
http://www.infoq.com/articles/seven-fallacies-of-bpm
http://www.infoq.com/articles/seven-fallacies-of-bpm
http://www.infoq.com/articles/seven-fallacies-of-bpm
http://www.infoq.com/articles/seven-fallacies-of-bpm
http://www.infoq.com/articles/seven-fallacies-of-bpm

Avancier
Figure 5. The Job Application Process

► How a business

analyst would

create a Job

Application

business process

definition using

BPMN

► The groups in

Blue represent

Human Task

boundaries.

► The resource life

cycle states have

been mapped to

process

transitions

Training at http://avancier.website

Avancier
Figure 6. The Job Application Process Implementation

► A business process execution environment is an assembly of Web Services

interacting with each other (not a centrally orchestrated set of Web Services)

Training at http://avancier.website

Avancier
Seven fallacies of BPM - re-phrased as negatives

1: Business analysts don’t model processes from a system’s viewpoint

2: Business users cannot easily learn BPMN and all its features.

3: Business analysts are unable to create executable solutions from process

models

4: There is no silver bullet

No magical BPMS can create solutions directly from business analysts inputs

without the need to develop integrations with existing systems, change existing

systems of record and do QA.

5: Business Process Execution is not best centralized

6: Business Process Execution semantics cannot be derived easily from

existing programming concepts

7: The paradigm in which executable design is layered on top of the BPMN

model, is not the way to go.

[Read the paper for more]

Training at http://avancier.website

Avancier
This slide show is based on two papers

Mapping BPMN to BPEL

http://eprints.qut.edu.au/5266/1/5266.pdf

Ouyiang, Dumas, van der Aalst and ter Hofstede

The Seven Fallacies of Business Process Execution

http://www.infoq.com/articles/seven-fallacies-of-bpm

Jean-Jacques Dubray

Training at http://avancier.website

http://eprints.qut.edu.au/5266/1/5266.pdf
http://www.infoq.com/articles/seven-fallacies-of-bpm
http://www.infoq.com/articles/seven-fallacies-of-bpm
http://www.infoq.com/articles/seven-fallacies-of-bpm
http://www.infoq.com/articles/seven-fallacies-of-bpm
http://www.infoq.com/articles/seven-fallacies-of-bpm
http://www.infoq.com/articles/seven-fallacies-of-bpm
http://www.infoq.com/articles/seven-fallacies-of-bpm

Avancier
Avancier’s conclusions from the experience recorded

► The BPM dream is reasonable in so far as:

■ Analysts use BPMN to visualize human activity system processes

■ Developers use BPEL to code computer activity system processes.

► However

■ A BPMN diagram is a cartoon for human actors

● So don’t try to transform BPMN diagrams into BPEL

■ BPEL is used by developers to code automated services

● Which store, maintain and read data entities that represent the state data that

must be remembered and tested to support and enable the business process

Training at http://avancier.website

Avancier

Training at http://avancier.website

Architect Training and Methods from Avancier

Avancier
Training and

Methods

BCS E&SA
reference model

TOGAF

The Open Group

IBM’s view EA

“EA as Strategy”

MIT authors

CSC’s domains of
change (POLDAT)

ArchiMate

Language
Framework

► Our training and

methods are useful

with all architecture

frameworks that share

similar domains and

entities

► http://avancier.website

