Avancier

Avancier Methods (AM)
Software Architecture

Decoupling - part 1
(LPC, RPC, DO, SOAP, WS)

Itis illegal to copy, share or show this document
(or other document published at http://avancier.co.uk)
without the written permission of the copyright holder

Copyright Avancier 2007-2016

http://avancier.co.uk/

Principles example 3 — a global organisation I

Avancier

1. Separate concerns (for flexibility and maintainability)

2. Build for competitive advantage / Buy for competitive parity
3. Encapsulate components (for CBD and SOA)

4. Use open APIs for inter-component communication

5. Loosely couple components (for flexibility and availability)
6. Use Event-Driven Architecture for broadcast updates

7. Maintain a single source of truth

8. Design for response time / latency

9. Design for graceful failure — informing users

10. Web first: design for browser and client device independence

Copyright Avancier 2007-2016

SOA presumption today I

Clients use domain names

] - ___| Avancier

Feature Early OO design presumptions Recent SOA design presumptions

Clients use object identifiers Clients use domain names

Namin _ . . :
g Remote objects are located using rather | Remote modules are located using Domain

Object Request Brokers Name Servers

Copyright Avancier 2007-2016

SOA presumption today I
Multiple name spaces (behind interfaces)

Avancier

| I —
Early OO design presumptions Recent SOA design presumptions
Naming One name space Multiple name spaces behind interfaces
Interface
Names
known to clients ’
a]
Names
unknown to clients |Component

Copyright Avancier 2007-2016

SOA presumption today I

Stateless objects /modules

] - ___| Avancier

Feature Early OO design presumptions Recent SOA design presumptions
Paradigm Stateful objects/modules Stateless objects/modules
Retain state between processes Retain state only long enough to
complete a process
A A
Service Component Service Component
Service o> Service o>
Service Service
Data
Service Service A
\/

Copyright Avancier 2007-2016

SOA presumption today I

Objects are transient and stateless (rather than stateful)

— Avancier
OOPer view DBA view
. " Database records model real world
Objects model real world entities, are stateful and ")
: entities. App server objects should
persist. : : . : be stateless and hold data only
Databases are infrastructure devices; SQL is evil.

while processing it

App Server Data Server
>
Customer Object XXX m
998 Schema
55 Oak Road, Town
O . ‘IIII am III>
Maximum
Wite Mary Customer Object YYY
{i 999
opelra on 80 Ash Road, Town
- £200 ‘lllllllllllllllllll» Database
operatlon Minimum
| Rude on the phone
operation
I

operation w
[
Copyright Avancier 2007-2016

Mapping OO class hierarchy to Database tables (Fowler)

Avancier
Single Table Inheritance
Represents an inheritance hierarchy of classes as a single table that has columns for all the fields of
the various classes.
Player
namsa
A «tlable
Players P
d Clags Table Inheritance
| | name
Faotballer Cricketer club / Represents an inheritance hierarchy of classes with one table for each class.
batting average
club batting average bowling average
type Player <tablg«
Footballers
name
club
Bowler A
bowling average I —I_ atablex
0 averag Cricketers
Footballer Cricketar
bating average
Concrete Table Inheritance chb batling avaraga
tablex
Represents an inheritance hierarchy of classes with one tablg/per concrete class in the hierarchy. Bowlers
bowling average
Player =lable- Bowler
Footballers | E——
name bowling average =tables
N&EMme Players
club
Q name
| |
Footballer Crighteter «tables
Cricketers
club batling average
nams
balling average
Bowler «tablaxs
Bowlers
bowling averaga
neme
batling average
/ bowling average

Copyright Avancier 2007-2016

SOA presumption today I

Reuse by delegation / invocation

Avancier

Feature Early OO design presumptions Recent SOA designh presumptions

Paradigm | Reuse by OO inheritance Reuse by delegation

The traditional reuse mechanism

Ay
Product

Balance
Check

Allocation

Order

Order
Closure

y o4
Customer

Credit
Check

Debit

Copyright Avancier 2007-2016

SOA presumption today I

Intelligent process controllers (hidden in aggregate root entities?)

Avancier
@ Domain Objects cooperate to perform a transaction
¥ T
cY
/) Command :Pupil :School (new) || :School (old)
>
T f’\/\ pupilTransfer (PupilNum, NewSchoolNum): Error Hi
. removePupil (OldSchoolNum)
Chain/ L
Choreography
addPupil (NewSchoolNum): NoRoomEifror
<. ________
Jeoooooooooooooooooooooocoooooocooooo=o0 '—l—

A controller orchestrates the Domain Objects

. \if
\ \\/\)\\(/ Command I :PupilTransfer I :Pupil :School (new) :School (old)
e =
FO rk/ = iITransfer (PupilNum, NeivSchoolNum): Error

|
Orchestration /

<_pupiITransfer (PupilNum): OTES}hooINum

Transaction or removePupil (OldSchoolNum) []
Session === == — === —=f-————l|ommmmm—oofo
Controller addPupil (NewSchoolNum): NpRoomError
e e e] <————————————————-------------ﬂ
T

Copyright Avancier 2007-2016

SOA presumption today

Decoupling from time/availability

Early OO design presumptions

Recent SOA design presumptions

Avancier

Time

Request-reply invocations

RPC

Asynchronous messaging

A client can use a call back mechanism,

or subscribe to be notified of a reply event

HTTP

Call back

Copyright Avancier 2007-2016

SOA presumption today I

Decoupling from time/availability

] - ___| Avancier

Feature Early OO design presumptions Recent SOA design presumptions

Time Blocking servers Non-blocking servers

Client invocation messages are held in a
message queue

@ Message
i Queue

Or the server is multi-threaded, so can
manage several states

Copyright Avancier 2007-2016

SOA presumption today I

Decoupling from location

Avancier

Feature Tight coupling Decoupling techniques

Location Remember remote addresses Use brokers/directories/facades

RPC

@ @
Copyright Avancier 2007-2016

Remember the OO envangelists’ ambition I

Avancier

» Turn the world into one big OO program (one name space)
» Intelligent domain objects can run on different machines
» And cooperate as though they run on the same machine.

Copyright Avancier 2007-2016

Object Request Brokers (ORBS) I

— Avancier
Client device App server
An Object Request Broker Process Boundary
establishes the proxies which | o
manage the remote T — T

' Pero

procedure call

So client and server think they
are on the same machine.

What the broker ctionA()
creates and does _"'D

()

[le.n

Copyright A I I

Hmm... I

— Avancier
Client device App server
Object Request Brokers were Process Boundary
supposed to free software o clonproey | 1 | sserverprony Server
i

|]
' PedofFunctionaf) !
'.-

designers from having to
think about where objects
are deployed

i

LocateServer()
i

= 1
MarshalRequast()
!

]

1

i
SendReguest()

=
Tell anecdote

N

LocateCl@nt()

SendResponse() |:|:|
L o T
— 'i 1
UnmarshalRespansa()y
-ﬁ L

LAl

Copyright A

2002 Fowler’s First Law of Distributed Object Design I

Avancier

» Don't distribute your objects!
m Put all your classes in a single “process” [meaning executable]
m Wrap up fine-grained classes behind Facades

» Unless you are forced to by the physical design

m By client-server distribution
o Client device - Web server — App server — Data server

m Orthe need to “scale out” for performance

Copyright Avancier 2007-2016

CBD I

Avancier

» Component-based development
m Using an ORB to connect distributed objects

m Architects complained
« the granularity of distributed objects is too small to be managed
« inheritance is limited and fragile reuse mechanism, unusable in distributed systems
« we need help to modularise enterprise applications that maintain large databases.

» Component-based design

m Designing application components that are much more coarse-grained than
distributed objects

m Nowadays called micro services

Copyright Avancier 2007-2016

Programming to an interface I

Avancier

» Method Interface

m decouple clients from the language a server uses.
m separate an interface from the work done =———> Realigation

g1
» Tools Component

m An IDL of your choice
« Sun's ONC RPC
o The Open Group's Distributed Computing Environment
« IBM's System Object Model
o Object Management Group's CORBA,
« WSDL for Web services

m Latterly WSDL

Copyright Avancier 2007-2016

Modelling interfaces in UML I

Avancier

» A component with a required interface desires to meet
» A component with a matching offered interface.

UML 1: Dependency arrow notation
Mail U g Mail €] Mail €
ZI enster — 9‘7 Server —)‘— Transfer
g Agent Agent
UML 2: Ball and Socket notation
Mail Usersj py Mail g Mail g
Server Transfer
(@— —(@
Agent Agent Agent

Copyright Avancier 2007-2016

Modelling Interfaces as Components in ArchiMate I

Avancier

A component-bound interface o= Z intrtace |

Client

component Server
component

An introduction agent or direct broker

<[“Interface” modelled as a component]
1 Web
; Service?
Client

component Server
2 component
An active mediator, indirect broker or facade
‘% “Interface” modelled as a component]
Client Middleware?
component 1 2 Server
component

Copyright Avancier 2007-2016

Web Services Definition Language (WSDL) I

Avancier

Web Service O—

Domain name Abstract section

Types Types: describes the data items used in I/O
- messages (using an XML Schema)
Interface Fault Interface:
Fault Fault messages
Operation :\lamte [] Operations discrete service s/behaviours
npu
OLFJ)tput

Copyright Avancier 2007-2016

Web Services Definition Language (WSDL) I

Avancier

|
Web Service O—
Domain name Abstract section
Types Types: describes data items used in I/O
- messages (using an XML Schema)

Interface Fault Interface:

Fault Fault messages

Operation NErTE] i . . .
Operations discrete service s/behaviours
> Input
Output

Bindings Concrete section

SOAP

— Binds operations to the protocols and

addresses needed to locate and invoke the
: operations at run-time.

Service End point address

End point address

Copyright Avancier 2007-2016

There can be more than one way to call the same operation I

] | AvanCier
Web Service O—
Domain name
Types .
Interface Fault
Fault
Operation Name]
> Input
Output
[
Bindings
SOAP prI -
http
Service End point addresSs
End point address

Copyright Avancier 2007-2016

Confusing entanglement of SOA and SOAP ¢1999 I

Avancier

» Microsoft promoted

» SOA in reaction against Distributed Objects, Object Request
Brokers and the CORBA standard

» WSDL1 in which
m resources are identified using URIs / domain names
web service operations are invoked
by sending XML messages
via Simple Object Access Protocol (SOAP)
over HTTP (or perhaps SMTP).

» Thus, Web Services, SOAP and SOA became confused with each
other

Copyright Avancier 2007-2016

Separating SOA from SOAP ¢c2003 I

Avancier

» Microsoft tended to present SOA as implying that
m clients should invoke web service operations

m using the Simple Object Access Protocol (SOAP)

« A SOAP message is an XML document containing:
o Envelope - identifies the XML document as a SOAP message.
o Header - optional
o Body — contains details of call and response
O

Fault - optional - provides information about errors that may occur while processing the
message.

» Many complained SOAP was
m Not Simple. Not Object-Oriented. Owned by Microsoft!

» So Microsoft gave it to the W3C
m SOAP 1.2 became a W3C recommendation in 2003

m And SOAP merely a name.

Copyright Avancier 2007-2016

Changes made in WSDL 2
Avancier

» Modules in remote systems interact with a web service in the manner
prescribed by its description in WSDL

WSDL1 WSDL.2 allows also
Data format XML messages JSON
Protocol SOAP over HTTP (or perhaps SMTP HTTP directly

» Programmers like to use JSON over HTTP directly

SWAGGER for JSON?
WADL (XML) for REST?

Copyright Avancier 2007-2016

So, the history of software architecture led us to I

Avancier

» Decouple
m Components that do the work
m Interfaces that present services to clients

m Services that can appear in several interfaces
‘— Component

- Service Interface Component
Web Services p
Definiti Read s Neb <] ———————————— Component
efinition Operation Service P

Language

Copyright Avancier 2007-2016

What are the qualities of a good service? (After Thomas Erl) I

Avancier

A service conforming to Web Service standards has four qualities: it is

an An interface that
» abstraction, hides the workings

»>composable, ~ Useable in a higher}
»loosely-coupled L level process

» defined by a contract. By time, location
and other ways

Beyond that, a well-designed service should be
» stateless }

Designers at design time (catalogue)
» reusable Client components at run time (directory)!

P autonomous,
» discoverable

For simplicity, a service should be transactional as well.

Copyright Avancier 2007-2016

Decoupling part 1 I

Avancier

Tightly-coupled Loosely-coupled
Faster / Simpler More Flexible

Early OO design

Feature) Recent SOA design presumptions
presumptions
Namin Clients use object identifiers | Clients use domain names
g One name space Multiple name spaces behind interfaces
Stateful objects/modules Stateless objects/modules
Paradigm Reuse by OO inheritance Reuse by delegation
Intelligent domain objects Intelligent process controllers
coBoL)
modules . . .
Timel Java obiects Request-reply invocations Asynchronous messaging Web. }
) >Blocking servers Non-blocking servers Services
CORBA /
Location Remember remote addresses | Use brokers/directories/facades

Copyright Avancier 2007-2016

Pick your battles (Craig Larman, “Applying UML and patterns’) I

Avancier

» “Coupling and cohesion [after Larry Constantine,1968] are truly
fundamental principles in design and should be appreciated as
such by all...”

» “Itis not high coupling per se that is the problem; it is high coupling
to elements that are unstable in some dimension, such as their
m interface [definition of services provided or required]
m Implementation [vendor-specific technology]
m mere presence [availability]”

» “If we put effort into “future proofing” or lowering the coupling when
we have no realistic motivation, this is not time well spent.”

» “Focus on the points of realistic high instability or evolution.”

Copyright Avancier 2007-2016

Footnhotes I

] - ___| Avancier

» Left overs

Copyright Avancier 2007-2016

Client-server communication using asynchronous servers I

Avancier

» REQUEST-REPLY using asynchronous message passing
m Client wants a service,
m Client sends an invocation message with a unique reference.
m Client checks its mail box until it finds a reply message with unique reference,
or else a timeout

» SUPERVISION OF PARALLEL PROCESSES using asynchronous message
passing
m Client spawns N subordinate processes, sending each a unigque reference
m Client checks its mail box until all process reply or else a timeout.
m [f time out, client kills all subordinates and returns error message to higher
supervisor.

» EVENT SEQUENCE HANDLER
m Reject out-of-sequence events.
m Or buffer them until other events mean they fit

Copyright Avancier 2007-2016

After http://www.w3schools.com/webservices/ws example.asp

» A web service interface
» Published somewhere
>

A voluminous WSDL file with a FQN (fully qualified
name) for each operation.

» A web service implementation

» On an app server

m E.g. A simple VBScript class with two operations

m Aclient could invoke an operation at run time
« wclass name, object id. and operation name.

= But we want to decouple a client from
. the app server name space
« the programming language

Avancier

Web Service

Domain name: tempuri.org

Types

Interface

| FahrenheitToCelsius |

| Input |
| Output |

| CelsiusToFahrenheit |

| Input |
[Output |

Convert Fto C

Convert Cto F

Copyright Avancier 2007-2016

http://www.w3schools.com/webservices/ws_example.asp
http://tempuri.org/FahrenheitToCelsius
http://tempuri.org/FahrenheitToCelsius

After http://www.w3schools.com/webservices/ws example.asp I
Avancier

» At design time, somebody Web Service
m assigns named operations to named domains Domain name: tempuri.org
m defines and publishes the logical interface (WSDL file) Types
m may import the logical interface into the client
Interface
» At run time a client calls an operation using its FQN : Pl onlin ot 8 s :
Input
m PI’OtO(?O' | Output |
m Domain name
m Operatlon name | CelsiusToFahrenheit |
Input
‘ <soap:operation soapAction="http://tempuri.org/FahrenheitToCelsius" style="document" /> : (:Etl:)ut :

» The App Server (Apache, WebSphere, Glassfish) binds
this to an operation of the web service implementation COMVELIE D (©
Convert Cto F

Copyright Avancier 2007-2016

http://www.w3schools.com/webservices/ws_example.asp
http://tempuri.org/FahrenheitToCelsius
http://tempuri.org/FahrenheitToCelsius
http://tempuri.org/FahrenheitToCelsius

