
Avancier

Copyright Avancier 2007-2016

Avancier Methods (AM)
Software Architecture

Decoupling - part 1
(LPC, RPC, DO, SOAP, WS)

It is illegal to copy, share or show this document

(or other document published at http://avancier.co.uk)

without the written permission of the copyright holder

http://avancier.co.uk/

Avancier
Principles example 3 – a global organisation

1. Separate concerns (for flexibility and maintainability)

2. Build for competitive advantage / Buy for competitive parity

3. Encapsulate components (for CBD and SOA)

4. Use open APIs for inter-component communication

5. Loosely couple components (for flexibility and availability)

6. Use Event-Driven Architecture for broadcast updates

7. Maintain a single source of truth

8. Design for response time / latency

9. Design for graceful failure – informing users

10. Web first: design for browser and client device independence

Copyright Avancier 2007-2016

Avancier
Clients use domain names

Copyright Avancier 2007-2016

SOA presumption today

Feature Early OO design presumptions Recent SOA design presumptions

Naming

Clients use object identifiers

Remote objects are located using rather

Object Request Brokers

Clients use domain names

Remote modules are located using Domain

Name Servers

Avancier

Feature Early OO design presumptions Recent SOA design presumptions

Naming One name space Multiple name spaces behind interfaces

Names
unknown to clients

Names
known to clients

Multiple name spaces (behind interfaces)

Copyright Avancier 2007-2016

 Interface

Component

SOA presumption today

Avancier

Feature Early OO design presumptions Recent SOA design presumptions

Paradigm Stateful objects/modules

Retain state between processes

Stateless objects/modules

Retain state only long enough to

complete a process

Stateless objects /modules

Copyright Avancier 2007-2016

Component

Service

Service

Service

Service

Data

Component

Service

Service

Service

Service

Data

SOA presumption today

Avancier

Copyright Avancier 2007-2016

Data Server App Server

Objects are transient and stateless (rather than stateful)

Database

Class
Library Customer Object XXX

998
55 Oak Road, Town
0
Maximum
Wife Mary

operation

operation

OOPer view

Objects model real world entities, are stateful and

persist.

Databases are infrastructure devices; SQL is evil.

DBA view

Database records model real world

entities. App server objects should

be stateless and hold data only

while processing it

Database
Schema

Customer Object YYY

999
80 Ash Road, Town
£200
Minimum
Rude on the phone

operation

operation

SOA presumption today

Avancier
Mapping OO class hierarchy to Database tables (Fowler)

Copyright Avancier 2007-2016

Avancier

Feature Early OO design presumptions Recent SOA design presumptions

Paradigm Reuse by OO inheritance Reuse by delegation

The traditional reuse mechanism

Order
Order
Closure

Reuse by delegation / invocation

Copyright Avancier 2007-2016

Customer
Credit
Check

Debit

Product
Balance
Check

Allocation

SOA presumption today

Avancier
Intelligent process controllers (hidden in aggregate root entities?)

Copyright Avancier 2007-2016

A controller orchestrates the Domain Objects

Domain Objects cooperate to perform a transaction

Chain/
Choreography

Fork/
Orchestration

pupilTransfer (PupilNum, NewSchoolNum): Error

removePupil (OldSchoolNum)

addPupil (NewSchoolNum): NoRoomError

Command :School (new) :School (old) :Pupil

:PupilTransfer :Pupil

pupilTransfer (PupilNum, NewSchoolNum): Error

:School (new) :School (old)

pupilTransfer (PupilNum): OldSchoolNum

removePupil (OldSchoolNum)

addPupil (NewSchoolNum): NoRoomError

Command

Transaction or
Session

Controller

SOA presumption today

Avancier

Feature Early OO design presumptions Recent SOA design presumptions

Time Request-reply invocations Asynchronous messaging

A client can use a call back mechanism,

or subscribe to be notified of a reply event

Decoupling from time/availability

Copyright Avancier 2007-2016

Client Server

RPC

Client Server

HTTP

Call back

SOA presumption today

Avancier

Feature Early OO design presumptions Recent SOA design presumptions

Time Blocking servers Non-blocking servers

Client invocation messages are held in a

message queue

Or the server is multi-threaded, so can

manage several states

Server

Decoupling from time/availability

Copyright Avancier 2007-2016

Client

Server

Client

Message
Queue

SOA presumption today

Client

Client

Server

Avancier
Decoupling from location

Copyright Avancier 2007-2016

Feature Tight coupling Decoupling techniques

Location Remember remote addresses Use brokers/directories/facades

Directory

Client Server

Intro
Agent

Facade Server Client

Client Server

RPC

SOA presumption today

Avancier
Remember the OO envangelists’ ambition

► Turn the world into one big OO program (one name space)

► Intelligent domain objects can run on different machines

► And cooperate as though they run on the same machine.

Copyright Avancier 2007-2016

Avancier

Copyright Avancier 2007-2016

Client device App server

Object Request Brokers (ORBs)

An Object Request Broker

establishes the proxies which

manage the remote

procedure call

So client and server think they

are on the same machine.

What the broker
creates and does

Avancier

Copyright Avancier 2007-2016

Client device App server

Hmm…

Object Request Brokers were

supposed to free software

designers from having to

think about where objects

are deployed

Tell anecdote

Avancier
2002 Fowler’s First Law of Distributed Object Design

► Don’t distribute your objects!

■ Put all your classes in a single “process” [meaning executable]

■ Wrap up fine-grained classes behind Façades

► Unless you are forced to by the physical design

■ By client-server distribution

● Client device - Web server – App server – Data server

■ Or the need to “scale out” for performance

Copyright Avancier 2007-2016

Avancier
CBD

► Component-based development

■ Using an ORB to connect distributed objects

■ Architects complained
● the granularity of distributed objects is too small to be managed

● inheritance is limited and fragile reuse mechanism, unusable in distributed systems

● we need help to modularise enterprise applications that maintain large databases.

► Component-based design

■ Designing application components that are much more coarse-grained than

distributed objects

■ Nowadays called micro services

Copyright Avancier 2007-2016

Avancier
Programming to an interface

► Method

■ decouple clients from the language a server uses.

■ separate an interface from the work done

► Tools

■ An IDL of your choice

● Sun's ONC RPC

● The Open Group's Distributed Computing Environment

● IBM's System Object Model

● Object Management Group's CORBA,

● WSDL for Web services

■ Latterly WSDL

Copyright Avancier 2007-2016

Interface

Realisation

Component

Avancier
Modelling interfaces in UML

► A component with a required interface desires to meet

► A component with a matching offered interface.

Copyright Avancier 2007-2016

UML 1: Dependency arrow notation

Mail

Server

Agent

Mail User

Agent

Mail

Transfer

Agent

UML 2: Ball and Socket notation

Mail

Server

Agent

Mail User

Agent

Mail

Transfer

Agent

Avancier
Modelling Interfaces as Components in ArchiMate

A component-bound interface

An introduction agent or direct broker

An active mediator, indirect broker or facade

Copyright Avancier 2007-2016

Server

component

Client

component

Interface

Web

Service?

Server

component

Client

component

“Interface” modelled as a component

1

2

Middleware?

Server

component

Client

component 1 2

“Interface” modelled as a component

Avancier

Web Service

Web Services Definition Language (WSDL)

Copyright Avancier 2007-2016

Interface

Domain name

Operation
Operation

Input

Output

Name

Types

Abstract section

Types: describes the data items used in I/O
messages (using an XML Schema)

Interface:

Fault messages

Operations discrete service s/behaviours

Fault

Fault

Avancier

Web Service

Web Services Definition Language (WSDL)

Copyright Avancier 2007-2016

Types

Bindings

Service

Interface Fault

Fault

SOAP

http

End point address

End point address

Domain name

Operation
Operation

Input

Output

Name

Abstract section

Types: describes data items used in I/O
messages (using an XML Schema)

Interface:

Fault messages

Operations discrete service s/behaviours

Concrete section

Binds operations to the protocols and
addresses needed to locate and invoke the
operations at run-time.

Avancier

Web Service

There can be more than one way to call the same operation

Copyright Avancier 2007-2016

Types

Bindings

Service

Interface Fault

Fault

SOAP

http

End point address

End point address

Domain name

Operation
Operation

Input

Output

Name

Avancier
Confusing entanglement of SOA and SOAP c1999

► Microsoft promoted

► SOA in reaction against Distributed Objects, Object Request

Brokers and the CORBA standard

► WSDL1 in which

■ resources are identified using URIs / domain names

■ web service operations are invoked

■ by sending XML messages

■ via Simple Object Access Protocol (SOAP)

■ over HTTP (or perhaps SMTP).

► Thus, Web Services, SOAP and SOA became confused with each

other

Copyright Avancier 2007-2016

Avancier
Separating SOA from SOAP c2003

► Microsoft tended to present SOA as implying that

■ clients should invoke web service operations

■ using the Simple Object Access Protocol (SOAP)

● A SOAP message is an XML document containing:

□ Envelope - identifies the XML document as a SOAP message.

□ Header - optional

□ Body – contains details of call and response

□ Fault - optional - provides information about errors that may occur while processing the

message.

► Many complained SOAP was

■ Not Simple. Not Object-Oriented. Owned by Microsoft!

► So Microsoft gave it to the W3C

■ SOAP 1.2 became a W3C recommendation in 2003

■ And SOAP merely a name.

Copyright Avancier 2007-2016

Avancier
Changes made in WSDL 2

► Modules in remote systems interact with a web service in the manner

prescribed by its description in WSDL

► Programmers like to use JSON over HTTP directly

Copyright Avancier 2007-2016

SWAGGER for JSON?
WADL (XML) for REST?

WSDL1 WSDL2 allows also

Data format XML messages JSON

Protocol SOAP over HTTP (or perhaps SMTP HTTP directly

Avancier
So, the history of software architecture led us to

► Decouple

■ Components that do the work

■ Interfaces that present services to clients

■ Services that can appear in several interfaces

Copyright Avancier 2007-2016

crud

Component r

Service Interface Component

Web Services

Definition

Language

Web
Service

Component
Read

Operation

Avancier

A service conforming to Web Service standards has four qualities: it is

an

►abstraction,

►composable,

►loosely-coupled

►defined by a contract.

Beyond that, a well-designed service should be

►stateless

►reusable

►autonomous,

►discoverable

For simplicity, a service should be transactional as well.

What are the qualities of a good service? (After Thomas Erl)

Copyright Avancier 2007-2016

Designers at design time (catalogue)
Client components at run time (directory)!

An interface that
hides the workings

Useable in a higher
level process

By time, location
and other ways

Avancier

Copyright Avancier 2007-2016

Decoupling part 1

Feature
Early OO design

presumptions
Recent SOA design presumptions

Naming
Clients use object identifiers

One name space

Clients use domain names

Multiple name spaces behind interfaces

Paradigm

Stateful objects/modules

Reuse by OO inheritance

Intelligent domain objects

Stateless objects/modules

Reuse by delegation

Intelligent process controllers

Time
Request-reply invocations

Blocking servers

Asynchronous messaging

Non-blocking servers

Location Remember remote addresses Use brokers/directories/facades

Tightly-coupled Loosely-coupled
Faster / Simpler More Flexible

COBOL

modules

Java objects

CORBA

Web

Services

Avancier
Pick your battles (Craig Larman, “Applying UML and patterns”)

► “Coupling and cohesion [after Larry Constantine,1968] are truly

fundamental principles in design and should be appreciated as

such by all…”

► “It is not high coupling per se that is the problem; it is high coupling

to elements that are unstable in some dimension, such as their

■ interface [definition of services provided or required]

■ implementation [vendor-specific technology]

■ mere presence [availability]”

► “If we put effort into “future proofing” or lowering the coupling when

we have no realistic motivation, this is not time well spent.”

► “Focus on the points of realistic high instability or evolution.”

Copyright Avancier 2007-2016

Avancier
Footnotes

► Left overs

Copyright Avancier 2007-2016

Avancier

Copyright Avancier 2007-2016

Client-server communication using asynchronous servers

► REQUEST-REPLY using asynchronous message passing
■ Client wants a service,
■ Client sends an invocation message with a unique reference.
■ Client checks its mail box until it finds a reply message with unique reference,

or else a timeout

► SUPERVISION OF PARALLEL PROCESSES using asynchronous message
passing
■ Client spawns N subordinate processes, sending each a unique reference
■ Client checks its mail box until all process reply or else a timeout.
■ If time out, client kills all subordinates and returns error message to higher

supervisor.

► EVENT SEQUENCE HANDLER
■ Reject out-of-sequence events.
■ Or buffer them until other events mean they fit

Avancier
After http://www.w3schools.com/webservices/ws_example.asp

► A web service interface

► Published somewhere

► A voluminous WSDL file with a FQN (fully qualified

name) for each operation.

► A web service implementation

► On an app server

■ E.g. A simple VBScript class with two operations
■ A client could invoke an operation at run time

● w class name, object id. and operation name.

■ But we want to decouple a client from

● the app server name space

● the programming language

Copyright Avancier 2007-2016

Temp

Converter Convert C to F

Convert F to C

Web Service

Types

Interface

Input

Output

FahrenheitToCelsius

Domain name: tempuri.org

Input

Output

CelsiusToFahrenheit

http://www.w3schools.com/webservices/ws_example.asp
http://tempuri.org/FahrenheitToCelsius
http://tempuri.org/FahrenheitToCelsius

Avancier
After http://www.w3schools.com/webservices/ws_example.asp

► At design time, somebody

■ assigns named operations to named domains

■ defines and publishes the logical interface (WSDL file)

■ may import the logical interface into the client

► At run time a client calls an operation using its FQN

■ Protocol

■ Domain name

■ Operation name

► The App Server (Apache, WebSphere, Glassfish) binds
this to an operation of the web service implementation

Copyright Avancier 2007-2016

<soap:operation soapAction="http://tempuri.org/FahrenheitToCelsius" style="document" />

Temp

Converter Convert C to F

Convert F to C

Web Service

Types

Interface

Input

Output

FahrenheitToCelsius

Domain name: tempuri.org

Input

Output

CelsiusToFahrenheit

http://www.w3schools.com/webservices/ws_example.asp
http://tempuri.org/FahrenheitToCelsius
http://tempuri.org/FahrenheitToCelsius
http://tempuri.org/FahrenheitToCelsius

