
Avancier

Copyright Avancier Limited 2007-2016

Avancier Methods (AM)
Software Architecture

Decoupling - part 2
(REST, EDA etc.)

It is illegal to copy, share or show this document

(or other document published at http://avancier.co.uk)

without the written permission of the copyright holder

http://avancier.co.uk/

Avancier
Principles example – a global organisation

1. Separate concerns (for flexibility and maintainability)

2. Build for competitive advantage / Buy for competitive parity

3. Encapsulate components (for CBD and SOA)

4. Use open APIs for inter-component communication

5. Loosely couple components (for flexibility and availability)

6. Use Event-Driven Architecture for broadcast updates

7. Maintain a single source of truth

8. Design for response time / latency

9. Design for graceful failure – informing users

10. Web first: design for browser and client device independence

Copyright Avancier Limited 2007-2016

Directives

Principle
!

Avancier

Copyright Avancier Limited 2007-2016

Decoupling part 1 - recap

Feature
Early OO design

presumptions
Recent SOA design presumptions

Naming
Clients use object identifiers

One name space

Clients use domain names

Multiple name spaces behind interfaces

Paradigm

Stateful objects/modules

Reuse by OO inheritance

Intelligent domain objects

Stateless objects/modules

Reuse by delegation

Intelligent process controllers

Time
Request-reply invocations

Blocking servers

Asynchronous messaging

Non-blocking servers

Location Remember remote addresses Use brokers/directories/facades

Tightly-coupled Loosely-coupled
Faster / Simpler More Flexible

COBOL

modules

Java objects

CORBA

Web

Services

Avancier
Representational State Transfer (REST)

► Roy Fielding defined REST

► We want application components to communicate across a network,

and we use internet protocols

► Why not capitalise on what the internet is good at?

■ Naming accessible resources

■ Locating remote resources using a domain name

■ Communication using protocols such as HTTP (and others perhaps)

■ Representation of component state using hypermedia

● a nonlinear medium of information which includes graphics, audio, video, plain

text and hyperlinks.

Copyright Avancier 2007-2016

Avancier
RESTful clients

► Every source/sender and target/receiver component is given a

domain name

► RESTful

■ Clients call server components using network protocol operation names

● HTTP: get, put, post and delete

► “This enables a distributed system to have desirable properties, such as

performance, scalability, simplicity, modifiability, visibility, portability, and reliability.”

Copyright Avancier 2007-2016

Avancier
Typical RESTful web API HTTP methods (Wikipedia)

Copyright Avancier 2007-2016

Resource LIST ITEM

GET

(read)

List Retrieve

PUT

(update)

Replace Replace.

POST

(create)

Create Not generally used.

DELETE

(delete)

Delete. Delete

Avancier
Typical RESTful web API HTTP methods (Wikipedia)

Copyright Avancier 2007-2016

Resource Collection URI, such as

http://example.com/resources

Element URI, such as

http://example.com/resources/item17

GET

(read)

List the URIs and perhaps other details

of the collection's members.

Retrieve a representation of the addressed

member of the collection, expressed in an

appropriate Internet media type.

PUT

(update)

Replace the entire collection with

another collection.

Replace the addressed member of the

collection, or if it doesn't exist, create it.

POST

(create)

Create a new entry in the collection.

The new entry's URI is assigned

automatically and is usually returned by

the operation.

Not generally used.

Treat the addressed member as a collection in

its own right and create a new entry in it.

DELETE

(delete)

Delete the entire collection. Delete the addressed member of the collection.

Avancier

Copyright Avancier 2007-2016

Traditional server-side component: one nouns, many verbs

Client -side Facade

listUsers()

addUser()

getUser()

updateUser()

removeUser()

findUser()

listLocations()

getLocation()

findLocation()

addLocation()

removeLocation()

updateLocation()

addAsset ()

assignAsset ()

Server-side

Asset
Manager

listUsers()

addUser()

getUser()

updateUser()

removeUser()

findUser()

listLocations()

getLocation()

findLocation()

addLocation()

removeLocation()

updateLocation()

addAsset ()

assignAsset ()

Avancier

Client-side Facade

listUsers()

addUser()

getUser()

updateUser()

removeUser()

findUser()

listLocations()

getLocation()

findLocation()

addLocation()

removeLocation()

updateLocation()

addAsset ()

assignAsset ()

Copyright Avancier 2007-2016

RESTful client: uses HTTP operation names BUT sends a parameter to qualify it

Server-side

Asset
Manager

listUsers()

addUser()

getUser()

updateUser()

removeUser()

findUser()

listLocations()

getLocation()

findLocation()

addLocation()

removeLocation()

updateLocation()

addAsset ()

assignAsset ()

GET

POST

GET

POST

DELETE

GET

GET

GET

GET

POST

DELETE

POST

POST

POST

Avancier

Copyright Avancier 2007-2016

REST-compliant servers: each has 1 noun and 4 verbs

Server-side

Domain names for the nouns

http://example.com/users/ (list users)

http://example.com/user/{user} (one per user)

http://example.com/user (get user form)

Internet operations for the verbs

userResource = new Resource('http://example.com/users/001')

userResource.delete()

User
List

Put

Get

Post

Delete

User

Put

Get

Post

Delete

Loc
List

Put

Get

Post

Delete

Loc

Put

Get

Post

Delete

User
Search

Form

Put

Get

Post

Delete

Loc
Search

Form

Put

Get

Post

Delete

Asset

Put

Get

Post

Delete

Client-side Facade

listUsers()

addUser()

getUser()

updateUser()

removeUser()

findUser()

listLocations()

getLocation()

findLocation()

addLocation()

removeLocation()

updateLocation()

addAsset ()

assignAsset ()

GET

POST

GET

POST

DELETE

GET

GET

GET

GET

POST

DELETE

POST

POST

POST

http://example.com/users/
http://example.com/user/{user}

Avancier
RESTful and REST-compliant

► Every source/sender and target/receiver component is given a

domain name

► RESTful

■ Clients call server components using network protocol operation names

● HTTP: get, put, post and delete

► REST-compliant

■ Server components offer only the operations above

■ With no paramaterised variations

Copyright Avancier 2007-2016

Avancier
RESTful and REST-compliant Web Services

► A Web Service

■ Has a URI

● such as http://example.com/resources

■ Uses internet-friendly I/O data flow formats

● Usually XML or JSON

► An arbitrary Web Service

■ Offers operations using HTTP methods

● e.g. GET, PUT, POST, or DELETE

■ But offers any number of operations (parameterised)

► A REST-compliant Web service

■ Offers a uniform set of "stateless" operations.

Copyright Avancier 2007-2016

Avancier

Copyright Avancier 2007-2016

Would you use REST where you need

► Fast response time?

► High availability?

► Guaranteed message delivery?

► Transaction rollback?

► Security?

Avancier

Copyright Avancier 2007-2016

Would you use REST where you need

► Fast response time?

■ It depends what you compare it with

► High availability?

■ Probably

► Guaranteed message delivery?

■ No (unless you do it by hand)

► Transaction rollback?

■ No (unless you do it by hand)

► Security?

■ HTTP is not secure

Avancier

Copyright Avancier Limited 2007-2016

More decoupling varieties

Feature Tight coupling Decoupling techniques

Data types Complex data types Simple data types

Version Version dependency
Design to avoid version dependence

Apply the open-closed principle

Protocol Protocol dependency Design for multiple protocols

Integrity

constraints
ACID transactions

BASE: compensating transactions and

eventual consistency

Often faster and/or
simpler

Often more flexible,
but more complex

Avancier
Decoupling from complex data type

Copyright Avancier Limited 2007-2016

Feature Tight coupling Decoupling techniques

Data types Complex data types

Date: DD/MM/YY

Address: 5 line address

Simple data types

Date: days, months and years

Address: premises, road, town, county/state,

country

Faster and simpler More flexible and complex

Avancier
Decoupling by version

Copyright Avancier Limited 2007-2016

Feature Tight coupling Decoupling techniques

Version Version dependency
Design to avoid version dependence

Apply the open-closed principle

Protocol Protocol dependency Design for multiple protocols

More flexible and complex

Avancier
Decoupling from integrity/consistency

Feature Tight coupling Decoupling techniques

Integrity

constraints

ACID transactions

Impractical when one process

spans distributed

components

Or process volumes are

extremely high

BASE: compensating transactions and

eventual consistency

Decouples transactions within a process and

performs them separately within a longer

workflow

•improves availability of process start

•improves scalability

•at the cost of consistency

•requires compensating transactions

Most business are not like ebay and

Amazon!

Copyright Avancier Limited 2007-2016

Simpler More flexible and complex

Avancier

Copyright Avancier Limited 2007-2016

Decoupling part 1 + 2

Feature Tight coupling Decoupling techniques

Naming
Clients use object identifiers

One name space

Clients use domain names

Multiple name spaces behind interfaces

Paradigm

Stateful objects/modules

Reuse by OO inheritance

Intelligent domain objects

Stateless objects/modules

Reuse by delegation

Intelligent process controllers

Time
Request-reply invocations

Blocking servers

Asynchronous messaging

Non-blocking servers

Location Remember remote addresses Use brokers/directories/facades

Data types Complex data types Simple data types

Version Version dependency
Design to avoid version dependence

Apply the open-closed principle

Protocol Protocol dependency Design for multiple protocols

Integrity

constraints
ACID transactions

BASE: compensating transactions and

eventual consistency

Often faster and/or
simpler

Often more flexible,
but more complex

Avancier
Finally, Event-Driven Architecture (EDA)

► We’ve mostly been discussing request-reply transactions

► What about event notification messages?

Copyright Avancier Limited 2007-2016

Avancier

Observer
Observer

Observer (notification, pub/sub) pattern

► Observer

■ A subject

● notifies observers of changes to its state

■ Observers

● register with the subject to be notified of changes.

● unregister when no longer interested

► Event-Driven Architecture (EDA)

■ Inserts a publisher (broker) between Subjects

and Observers, and so decouples

Copyright Avancier 2013

2 Publish event
Subject

Observer
1 Subscribe

Observer
Observer

3 Publish event

Publisher
(Broker)

Event source
and/or

Subscriber

1 Subscribe

2 Notify of event

Compare with EDA (hidden)

Avancier

r r r r

Event-Driven Architecture (EDA)

► Two styles

Copyright Avancier Limited 2007-2016

r r

Shared
Data

Space

Receiver Sender

r r Publisher Subscriber
Event

Source

Topic A

Topic B

Topic C

Push

Pull

Push

Pull

Avancier

r r

Copyright Avancier Limited 2007-2016

Communication styles – summary overview

Client Server

RPC

Client Server

Intro
Agent

Message
Broker

Server Client

Shared
Data

Space

Receiver Sender

Connected Disconnected

Active

Mediator

Passive

Mediator

Communication

Style

Point to Point
Introduction

Agent

Under the covers, all
communication is point

to point!

Directory

Message

Broker

Message

Bus

r r Publisher Subscriber
Event

Source

Request-reply

Event broadcast

Event broadcast

Avancier

Copyright Avancier Limited 2013

Summary

Communication styles

Tightly-coupled Loosely-coupled

 LPC RPC DO SOAP REST EDA

SOA

Interoperation styles

ORB XML WS HTTP DNS Pub/Sub Shared data space

Domain names
Stateless modules
Message passing

Non-blocking servers

Object identifiers
Stateful objects

Request-reply invocations
Blocking servers

Interoperate using via
intermediary pub/sub or

data space

Interoperate using
domain names and the

operations of an
internet protocol

Connected Disconnected

Indirect Broker

Active

Mediator

Shared space

Passive

Mediator

Communication

Style

Point to Point

Direct broker

Introduction

Agent

Message

Broker

Message

Bus

Avancier
Footnotes

► Left overs

Copyright Avancier 2007-2016

Avancier

Modular design

Procedural & OO variations

Decoupling of technology

Decoupling of location

Decoupling of acquaintance

Decoupling of activity

A questionable family tree of software architecture concepts

Copyright Avancier 2007-2016

SOA?

EDA

Object-Oriented
Design (OOD)

Client-server
Computing

Modular design

Programming to an
interface

Point-to-Point
distribution

Direct Broker
Introduction Agent

Distributed Objects
(DO)

Active Mediator
Message Broker

Active Mediator
Message Bus

Representational State
Transfer (REST)

Web protocols and DNS

RPC, RDA

ORB

Publish and Subscribe

Mediator

Separation of user views
from data sources

Inheritance and OOPLs

Interface Definition Languages

Encapsulation

Directories

Passive Mediator
Shared Data Space

Avancier
The architectural properties of REST

► Client–server (separation of concerns)

■ Servers and clients can be developed and replaced independently, as long as the interface

between them is not altered.

► Stateless

■ A server holds no client context between requests

■ Session state is held in the client, or in a database.

■ The client sends a request when it is ready to transition to a new state.

■ While requests are outstanding, the client is considered to be in transition.

■ The representation returned contains links the client may use initiate a new state-transition.

► Cacheable

■ Responses must define themselves as cacheable, or not, to prevent clients from reusing stale or

inappropriate data

► Layered system

■ A client cannot tell whether it is connected directly to the end server, or to an intermediary along

the way. Intermediary servers may improve system scalability load balancing, providing shared

caches and enforce security policies.

► Code on demand (optional)

■ Servers can temporarily extend or customize the functionality of a client by the transfer of

executable code (e.g. Java applets and client-side scripts such as JavaScript.)

Copyright Avancier 2007-2016

Avancier
Also, Uniform interface

► Identification of resources

■ Requests identify resources, usually using URIs

■ A server may represent its state in HTML, XML or JSON (none of which are the server's internal

representation)

► Manipulation of resources through these representations

■ When a client holds a representation of a resource, including any metadata attached, it has

enough information to modify or delete the resource.

► Self-descriptive messages

■ Each message includes enough information to describe how to process the message.

■ Responses also explicitly indicate their cacheability.

► Hypermedia as the engine of application state

■ Clients make state transitions only through actions that are dynamically identified within

hypermedia by the server (e.g., by hyperlinks within hypertext).

■ A client does not assume that any particular action is available for any particular resources

beyond those described in representations previously received from the server.

Copyright Avancier 2007-2016

Avancier

Copyright Avancier 2007-2016

Interoperation styles versus technologies

► Different interoperation styles have been topical at different times and places.

► There has been drift from more closely coupled to more loosely coupled.

► How to differentiate styles from the technologies?

► DO, SOA and EDA as styles

■ We distinguish styles by implications they have for concepts such as object references,
statefulness, synchronicity and message passing.

■ This make the concepts examinable without implying any particular standard or technology
(XML, SOAP, HTTP, WS or ESB).

► REST - part style - part technology

■ REST does come with presumptions about using universal internet protocols and
technologies.

■ REST is usually contrasted with SOAP rather than SOA.

■ REST enables a loosely–coupled SOA that comes with various limitations.

