Avancier

Avancier Methods (AM)
Software Architecture

Decoupling - part 2
(REST, EDA etc.)

Itis illegal to copy, share or show this document
(or other document published at http://avancier.co.uk)
without the written permission of the copyright holder

Copyright Avancier Limited 2007-2016

http://avancier.co.uk/

Principles example — a global organisation I

Avancier

1. Separate concerns (for flexibility and maintainability) D”ecnvesm
2. Build for competitive advantage / Buy for competitive parity Principle
3. Encapsulate components (for CBD and SOA)

4. Use open APIs for inter-component communication

5. Loosely couple components (for flexibility and availability)

6. Use Event-Driven Architecture for broadcast updates

7. Maintain a single source of truth

8. Design for response time / latency

9. Design for graceful failure — informing users

10. Web first: design for browser and client device independence

Copyright Avancier Limited 2007-2016

Decoupling part 1 - recap I

Avancier

Tightly-coupled Loosely-coupled
Faster / Simpler More Flexible

Early OO design

Feature) Recent SOA design presumptions
presumptions
Namin Clients use object identifiers | Clients use domain names
g One name space Multiple name spaces behind interfaces
Stateful objects/modules Stateless objects/modules
Paradigm Reuse by OO inheritance Reuse by delegation
Intelligent domain objects Intelligent process controllers
coBoL)
modules . . .
Timel Java obiects Request-reply invocations Asynchronous messaging Web. }
) >Blocking servers Non-blocking servers Services
CORBA /
Location Remember remote addresses | Use brokers/directories/facades

Copyright Avancier Limited 2007-2016

Representational State Transfer (REST) I

] - ___| Avancier

» Roy Fielding defined REST

» We want application components to communicate across a network,
and we use internet protocols

» Why not capitalise on what the internet is good at?
m Naming accessible resources
m Locating remote resources using a domain name
m Communication using protocols such as HTTP (and others perhaps)
|

Representation of component state using hypermedia

« anonlinear medium of information which includes graphics, audio, video, plain
text and hyperlinks.

Copyright Avancier 2007-2016

RESTful clients I

] - ___| Avancier

» Every source/sender and target/receiver component is given a
domain name

» RESTful

m Clients call server components using network protocol operation names
« HTTP: get, put, post and delete

» “This enables a distributed system to have desirable properties, such as
performance, scalability, simplicity, modifiability, visibility, portability, and reliability.”

Copyright Avancier 2007-2016

Avancier

Typical RESTful web API HTTP methods (Wikipedia)

B -

GET List Retrieve

(read)

PUT Replace Replace.

(update)

POST Create Not generally used.
(create)

DELETE Delete. Delete

(delete)

Copyright Avancier 2007-2016

Avancier

Typical RESTful web API HTTP methods (Wikipedia)

|
Resource |[Collection URI, such as Element URI, such as
http://example.com/resources http://example.com/resources/item17
GET List the URIs and perhaps other details Retrieve a representation of the addressed
(read) of the collection's members. member of the collection, expressed in an

appropriate Internet media type.

PUT Replace the entire collection with Replace the addressed member of the
(update) another collection. collection, or if it doesn't exist, create it.

POST Create a new entry in the collection. Not generally used.

(create) The new entry's URI is assigned Treat the addressed member as a collection in

automatically and is usually returned by its own right and create a new entry in it.
the operation.

DELETE Delete the entire collection. Delete the addressed member of the collection.
(delete)

Copyright Avancier 2007-2016

Traditional server-side component: one nouns, many verbs I

— Avancier
Client -side Facade Lr-suje
listUsers() »| listUsers()
addUser() »{ addUser()
getUser() » getUser()
updateUser() » updateUser() O
removeUser() removeUser()
findUser() findUser()
listLocations() listLocations() Asset
getLocation() getLocation() Manager
findLocation() findLocation()
addLocation() addLocation() e
removeLocation() removeLocation()
updateLocation() updatelLocation()
addAsset () addAsset ()
assignAsset () assignAsset ()

Copyright Avancier 2007-2016

RESTful client: uses HTTP operation names BUT sends a parameter to qualify it I

— Avancier
Client-side Facade Lr-suje
listUsers() GET »| listUsers()
addUser() POST addUser()
getUser() GET » getUser()
updateUser() POST updateUser() O
removeUser() DELETE removeUser()
findUser() GET findUser()
listLocations() GET listLocations() Asset
getLocation() GET getLocation() Manager
findLocation() GET findLocation()
addLocation() POST addLocation() e
removeLocation() DELETE removeLocation()
updateLocation() POST updatelLocation()
addAsset () POST addAsset ()
assignAsset () POST assignAsset ()

Copyright Avancier 2007-2016

REST-compliant servers: each has 1 noun and 4 verbs I

Avancier
y 4 -
: : Server-side
Client-side Facade ANy A Ay
Put User Put Loc Put
i > Get Get G
listUsers() GET Pgst List stt List PS;t Asset
addUser() POST / Delete Delete Delete
getUser() GET
\ Put Put /\
updateUser() POSTL gz;t User g:;t Loc D
removeUser() DELETEF——— De'ete- De'ete-
findUser() GET n
\ ut User Put Loc
listLocations() GET St Search St Search
- Delete FEL Delete FEL
getLocation() GET
finakocatent) | Domain names for the nouns ~
addLocation() POST http://example.com/users/ (list users)
removeLocation() DELETE http://example.com/user/{user} (one per user)
http://example.com/user (get user form)
updateLocation() POST
addAsset () POST Internet operations for the verbs
: userResource = new Resource('http://example.com/users/001")
assignAsset () POST userResource.delete()

Copyright Avancier 2007-2016

http://example.com/users/
http://example.com/user/{user}

RESTful and REST-compliant I

] - ___| Avancier

» Every source/sender and target/receiver component is given a
domain name

» RESTful

m Clients call server components using network protocol operation names
« HTTP: get, put, post and delete

» REST-compliant

m Server components offer only the operations above
m With no paramaterised variations

Copyright Avancier 2007-2016

RESTful and REST-compliant Web Services I

Avancier

» A Web Service

m Has a URI
« such as http://example.com/resources

m Uses internet-friendly I/O data flow formats
o Usually XML or JSON

» An arbitrary Web Service

m Offers operations using HTTP methods
« e.g. GET, PUT, POST, or DELETE

m But offers any number of operations (parameterised)

» A REST-compliant Web service
m Offers a uniform set of "stateless" operations.

Copyright Avancier 2007-2016

Would you use REST where you need I

] - ___| Avancier

» Fast response time?

» High availability?

» Guaranteed message delivery?
» Transaction rollback?

» Security?

Copyright Avancier 2007-2016

Would you use REST where you need I

] - ___| Avancier

» Fast response time?
m |t depends what you compare it with
» High availability?
m Probably
» Guaranteed message delivery?
m No (unless you do it by hand)
» Transaction rollback?
m No (unless you do it by hand)
» Security?
m HTTP is not secure

Copyright Avancier 2007-2016

Avancier

Often faster and/or
simpler

More decoupling varieties Often more flexible, L

but more complex

Feature Tight coupling Decoupling techniques

Data types Complex data types Simple data types

Version Version dependency Design to avoid version d_ep_endence
Apply the open-closed principle

Protocol Protocol dependency Design for multiple protocols

Integrlty ACID transactions BASE: compepsatlng transactions and

constraints eventual consistency

Copyright Avancier Limited 2007-2016

Avancier

Decoupling from complex data type

| I —
Feature Tight coupling Decoupling techniques
Data types Complex data types Simple data types
Date: DD/MM/YY Date: days, months and years
Address: 5 line address | Address: premises, road, town, county/state,
country

Copyright Avancier Limited 2007-2016

Avancier

Decoupling by version

Feature Tight coupling Decoupling techniques

version Version dependency Design to avoid version (J!ep_endence
Apply the open-closed principle

Protocol Protocol dependency Design for multiple protocols

Copyright Avancier Limited 2007-2016

Avancier

Decoupling from integrity/consistency

Feature Tight coupling Decoupling techniques
Integrity ACID transactions BASE: compensating transactions and
constraints eventual consistency
Impractical when one process
spans distributed Decouples transactions within a process and
components performs them separately within a longer
workflow

Or process volumes are

extremely high simproves availability of process start

simproves scalability
at the cost of consistency
srequires compensating transactions

Most business are not like ebay and
Amazon!

Copyright Avancier Limited 2007-2016

Avancier

Often faster and/or
simpler

Decoupling part1+2

Often more flexible,
but more complex

Feature Tight coupling Decoupling techniques
: Clients use object identifiers Clients use domain names
Naming : L
One name space Multiple name spaces behind interfaces
Stateful objects/modules Stateless objects/modules
Paradigm Reuse by OO inheritance Reuse by delegation
Intelligent domain objects Intelligent process controllers
: Request-reply invocations Asynchronous messaging
Time) :
Blocking servers Non-blocking servers
Location Remember remote addresses Use brokers/directories/facades
Data types Complex data types Simple data types
version Version dependency Design to avoid version d_ep_endence
Apply the open-closed principle
Protocol Protocol dependency Design for multiple protocols
Integnt;_/ ACID transactions BASE: compepsatlng transactions and
constraints eventual consistency

Copyright Avancier Limited 2007-2016

Finally, Event-Driven Architecture (EDA) I

Avancier

» We've mostly been discussing request-reply transactions
» What about event notification messages?

Copyright Avancier Limited 2007-2016

Observer (notification, pub/sub) pattern I

Avancier

» Observer

: Subject
m A subject 2 Publish event
« notifies observers of changes to its state
1 Subscribe

m Observers

« register with the subject to be notified of changes.
» unregister when no longer interested |

Observer

Compare with EDA (hidden)

Copyright Avancier 2013

Event-Driven Architecture (EDA) I

Avancier

» Two styles

Receiver ”

Copyright Avancier Limited 2007-2016

Communication styles — summary overview I

Avancier
Communication
Style
Under the covers, all
commu?(l)c;ct)lic:]rt\!ls point Connected Disconnected
E . . Introduction Active Passive
] N /= P ool Agent Mediator Mediator
Client)« Server — - \
_- - \
- Message Message | Ewent broadcast
Broker Bus \
v d 1
7 I
7’
Vs |
e 1
/ |
Reqyest-reply |
e Event broadcast

Ve 1
ve ’ l
i, =
Message
Broker
Copyright Avancier Limited 2007-2016

Communication I
Summary Style

Avancier
Connected Communlcatlon Styles Disconnected
Direct broker Indirect Broker Shared space
P 0 (=l Introduction Active Passive
Agent Mediator Mediator
: Message Message
Tightly-coupled- Broker Bus Lposely-coupled
s - ORB XMLWS HTTPDNS Pub/Sub “-3hared data space
LPC RPC O SOAP REST EDA

SOA

Object identifiers Domain names Interoperate using _Interoperate using via
Stateful objects Stateless modules domain names and the intermediary pub/sub or
Request-reply invocations Message passing operations of an data space
Blocking servers Non-blocking servers internet protocol

Interoperation styles

Copyright Avancier Limited 2013

Footnhotes I

] - ___| Avancier

» Left overs

Copyright Avancier 2007-2016

A guestionable family tree of software architecture concepts

Modular design

Procedural & OO variations

Decoupling of technology

Decoupling of location

Decoupling of acquaintance

Decoupling of activity

Encapsulation

Separation of user views
from data sources

Modular design

Inheritance and OOPLs

Avancier

|

|

~

Client-server TS P Ko E e Object-Oriented
Computing Design (OOD)
ogramming to an
RPC, RDA interface
A\ 4
Point-to-Point _ _
distribution Diregtories
A\ 4 A 4
. ORB e .
Direct Broker Distributed Objects
Web protocols apd DNS Introduction Agent (DO)
/ ! Medﬁator
epresentational State Active Mediator
Transfer (REST) Message Broker Publish and Subscribe \
4 N

SOA?

Active Mediator
Message Bus

Copyright Avancier 2007-2016

g

Passive Mediator
Shared Data Space

EDA

The architectural properties of REST

>

S — Avancier

Client—server (separation of concerns)

m Servers and clients can be developed and replaced independently,
between them is not altered.

Stateless

A server holds no client context between requests

Session state is held in the client, or in a database.

The client sends a request when it is ready to transion to a new state.

While requests are outstanding, the client is congidered to be in transition.

The representation returned contains links the‘client may use initiate a new state-transition.

Cacheable

m Responses must define themselves agCacheable, or not, to prevent clients from reusing stale or
Inappropriate data

Layered system

m A client cannot tell whether i
the way. Intermediary ser
caches and enforce se

Code on demand tional)

m Servers can temgorarily extend or customize the functionality of a client by the transfer of
executable code (e.g. Java applets and client-side scripts such as JavaScript.)

long as the interface

{S connected directly to the end server, or to an intermediary along
rs may improve system scalability load balancing, providing shared
rity policies.

Copyright Avancier 2007-2016

Also, Uniform interface

] - ___| Avancier

» Identification of resources
m Requests identify resources, usually using URIs
m A server may represent its state in HTML, XML or JSON (none &f which are the server's internal
representation)
» Manipulation of resources through these representatioris

m When a client holds a representation of a resource, incldding any metadata attached, it has
enough information to modify or delete the resource

» Self-descriptive messages
m Each message includes enough information tg"describe how to process the message.
m Responses also explicitly indicate their cagheability.

» Hypermedia as the engine of application state

m Clients make state transitions only tirough actions that are dynamically identified within
hypermedia by the server (e.g., py hyperlinks within hypertext).

m A client does not assume tharany particular action is available for any particular resources
beyond those described infepresentations previously received from the server.

Copyright Avancier 2007-2016

Interoperation styles versus technologies I

] - ___| Avancier

» Different interoperation styles have been topical at different times and placés.
» There has been drift from more closely coupled to more loosely coupl

» How to differentiate styles from the technologies?

» DO, SOA and EDA as styles

m We distinguish styles by implications they have fgrconcepts such as object references,
statefulness, synchronicity and message passing.

m This make the concepts examinable withoutimplying any particular standard or technology
(XML, SOAP, HTTP, WS or ESB).

» REST - part style - part technolo

m REST does come with presumptions about using universal internet protocols and
technologies.

m REST is usually contrasted with SOAP rather than SOA.
m REST enables a lggSely—coupled SOA that comes with various limitations.

Copyright Avancier 2007-2016

