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Avancier 
Design patterns 

► There are patterns for  

■ enterprise architecture 

■ solution architecture 

■ software architecture 

 

► A design pattern is a general shape that recurs in many cases 

► It should 

■ be a general solution to a general design problem 

■ be a tried and tested design 

■ speed up development 

■ encourage consistency, help standardise how design is done in an enterprise. 

■ reduce the risk of reliance on an individual designer. 
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Patterns as diagrams 

► Some patterns are available in the form of code. 

► But patterns are usually represented in diagrams 
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“If you think you have a pattern, you must be able to draw a diagram of it.  

This is a crude, but vital rule. “ 

 

“If you can't draw it, it isn't a pattern.” 

 

“A pattern defines a field of spatial relations, and it must always be 

possible to draw a diagram for every pattern. “ 
Christopher Alexander (1979) in The Timeless Way of Building 



Avancier 
Encapsulation 

► Many design patterns are based an assumption 

 

► Each component in it is encapsulated and defined by 

■ its input/output interface 

■ the discrete events it can process and services it can offer.  

 

► On its own, encapsulation isn’t a pattern 

► But it is usually assumed in other patterns.  
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A simple and common pattern: Façade 

Problem:  

►How can a client avoid being too 

tightly coupled with a server 

subsystem? 

►How to aggregate services into a 

coarser-grained component? 

 

 

 

Solution:  

► Introduce a façade that provides a 

unified interface for different clients, 

and makes the subsystem easier to 

use 

►So clients know what the subsystem 

does for them, but nothing else 
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Fowler example of a Facade 

► The façade simplifies a remote invocation for an address 
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Alternative patterns 

► Capable architects  

■ understand the available patterns 

■ look to use them in the right circumstances 

■ choose between alternative patterns by trading off their pros and cons 
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Alternative patterns: Centralisation and Distribution 

A never-ending debate 

How far should powers be  

► distributed to many nodes/places? 

► centralised in one node/place? 
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a “Europe of Regions”? 
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Distributing 

Centralising 

Alternative patterns to be discussed 
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Chain/Choreography 

 

 

 

 

 

 

All interact and cooperate: 

distributes intelligence about 

a process 
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Point to Point v Hub and Spoke 
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► Subsystems talk to each other directly. 

► Can be faster and simpler 

► OK where  

■ inter-component communication is 1 to 1 

■ components at either endpoint are stable. 

 

 

► Subsystems communicate via some kind of 

mediator or middleware.  

► Can be more complex and slower than point-to-

point integration. 

► Better where  

■ inter-component communication is many to many 

■ components at either endpoint are volatile. 
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Hierarchical layer v Peer to Peer 

► Oft used to structure a complicated system.  

■ Machine architecture (programming language, OS, 

device drivers and CPU instruction sets, logic gates inside 

chips) 

■ Network architecture (FTP, TCP, IP, Ethernet). 

► Software architecture (UI, Logic, Database) 

 

 

 

► Sometimes said to be a bad thing 

► fragile and unstable structure 

► difficult to understand and maintain 

► undermine testability, parallel development, 

and reuse. 
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Hierarchical layering 
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Peer-to-peer structures 

► Given a system structure with co-dependent components 

 

 

 

 

 

 

► Suppose you restructure it to eliminate all cyclic dependencies? 

► The result will be a hierarchically-layered structure 
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Cyclical “dependency”  arrows 

Order Product 
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Hierarchically layered structure 

► Higher-level components depend on lower-level ones, but not vice-versa 

► The structure often resembles what Barry Boehm called a Mosque Shape. 
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Hierarchical layering in enterprise applications 

► Variations of a three-layer software architecture are common 
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Software Layers <> Platform Tiers 

► Layers and Tiers influence each other 

► But don’t perfectly correspond 
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Business Domain Layer 
The business logic that is the function of the system. 
Triggered by commands and queries. 

Data source layer 
Communication with databases, transaction managers, 
messaging systems etc. 

UI/Presentation Layer 
e.g. HTTP requests.  
Display of windows or HTML pages 

Web/App Server 
Tier 

Client  Device 
Tier 

Network 

Data Server Tier 

Network 
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Where are business domain rules executed? 

► A mantra of early OO design was that all business rules belong (in 

domain objects) in the app server tier 

 

In practice 

 

► Validation of input data items against data types -> 

 

 

► Workflow logic and some business rules -> 

 

 

► Data integrity and other data-bound rules -> 
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Fork/Orchestration v Chain/Choreography 
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Chain/Choreography 
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One schedules and directs 

others: centralises intelligence 

about a process 
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CRM Billing ERP 

► Fork/Orchestration:  

■ centralises intelligence about a process sequence in a 

workflow controller that supervises and orchestrates the 

procedure.  

■ A controller directs other components to complete the 

process.  

■ It manages the sequence of activities by invoking 

components in turn. 

 

► Chain/Choreography:  

■ distributes intelligence about a process sequence 

between several entity or domain components.  

■ Components cooperate to complete the process.  

■ Each component does part of the work, then calls the 

next component (cf. pipe and filter.) 
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Fork/Orchestration v Chain/Choreography 

Fork: A controller orchestrates the Domain Objects 

Chain: Domain Objects cooperate to perform a transaction 

pupilTransfer (PupilNum, NewSchoolNum): Error 

removePupil (OldSchoolNum) 

 

 

 

addPupil (NewSchoolNum): NoRoomError 

Command :School (new) :School (old) :Pupil 

:PupilTransfer :Pupil 

pupilTransfer (PupilNum, NewSchoolNum): Error 

:School (new) :School (old) 

pupilTransfer (PupilNum): OldSchoolNum 

 

 

removePupil (OldSchoolNum) 

 

addPupil (NewSchoolNum): NoRoomError 

Command 

Transaction or 
Session 

Controller 
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Alternative patterns 

► Capable architects  

■ understand the available patterns 

■ look to use them in the right circumstances 

■ choose between alternative patterns by trading off their pros and cons. 

 

► You should understand  

■ the problem you have;  

■ the problem the pattern is intended to solve; 

■ the benefits, costs and alternatives; 

■ the trade-offs between alternative patterns 

■ whether the pattern is or should be a local standard.  

Copyright Avancier Limited 2007-2016 



Avancier 

Copyright Avancier Limited 2007-2016 

What can we learn from Software Design Patterns?  

► All system design is about 

■ designing required processes 

■ dividing the system into actors/components. 

■ organising the actors/components to perform processes 

 

 

► At least some Software Design Patterns are relevant to 

■ enterprise application integration 

■ the design of human activity systems 
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Beware 

► “Patterns are a starting point… 

► “Every pattern is incomplete… 

► “You have the responsibility of completing it in the context of your 

own system”  

► Martin Fowler 
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Footnotes 

► Classic patterns in enterprise application architecture 

► GRASP pattern 

► Demeter’s law 
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Classic patterns in enterprise application architecture 

► Transaction script 

■ Centralises intelligence about the process for an event or enquiry 

■ A simple procedural model – needs only a simple data source layer 

■ Start with opening a transaction and end with closing it 

 

► Object-oriented 

■ Distributes intelligence about a process between entities 

■ Table module 

● One object for each database table (record set) 

■ Domain model 

● One object for each entity instance 

● Simple domain model: mostly 1 OO class to 1 database table 

● Rich domain model: complex class to table mapping 

□ “anecdotal observations put the effort of mapping to a relational database at around a 

third of programming effort—a cost that continues during maintenance.” Fowler 
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Choosing between patterns 

► Fowler drew this graph 

 

► Limiting the use of rich 

domain models to highly 

complex situations 

 

► OO book authors like to 

write about those 

situations 
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Transaction script 

► “However much of an object bigot you become, don’t rule out Transaction 

Script.  

► There are a lot of simple problems, and a simple solution will get you up and 

running much faster.”…  

► “Many… scripts act directly on the database, putting SQL into the procedure.” 

 

► “The simplest Transaction Scripts contain their own database logic” 
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    Transaction Script 

 

 

 

 

 

 

The procedure 

may share 

 subroutines 

School-Pupil  
Database 

Replace Pupil  Foreign Key 

 

Update Old School 

 

Update New School 

 

:PupilTransfer 

pupilTransfer (PupilNum, NewSchoolNum): Error 

Command 
This is still model of a kind! 
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By the way 

► Fowler drew these diagrams to 

illustrate how each pattern works 

for “calculating revenue 

recoginations” in a case study 
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The GRASP pattern 

► A good designer can mix alternative patterns 

► Use each pattern where it is appropriate. 

 

► The GRASP pattern can be used to design a structure than 

compromises between  

■ Fork/Orchestration 

■ Chain/Choreography styles. 
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The General Responsibility Assignment Software Pattern  

► Craig Larman uses it to advance various  principles for designing the 
interactions between components, including these five 

  

GRASP Meaning 

Expert 
Assign a responsibility to the expert  component, which has the data to 

fulfil the responsibility 

Creator 
Assign a responsibility for creating an object (or entity instance) to the 

component that collects or holds the object’s initial data 

Low-Coupling Ensure coupling between components remains low. 

High-Cohesion Ensure cohesion within a component remains high. 

Controller Create components to handle events in the end-to-end process 
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:PupilTransfer :Pupil 

pupilTransfer (PupilNum, NewSchoolNum): Error 

:School (new) :School (old) 

 
 
 

 
 

pupilTransfer (PupilNum),  

NewSchoolNum : 

 

 

 

addPupil (NewSchoolNum): NoRoomError 

Command 

removePupil (OldSchoolNum) 
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Application of the GRASP design pattern 

► The system remembers  

■ the names of Schools 

■ the Pupils currently registered in each School 

■ the PupilTotal for each School. 

► If the new School’s maximum number of pupils if not exceeded, and the 

Pupil Transfer event completes, then a Pupil will be moved from his/her 

current School to his/her new School,  
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Demeter’s Law 

► (1) A component should know only a few (<6?) 

other closely-related components. 

 

► (2) A component should talk only to its immediate 

relatives; not ‘reach through’ them to talk to 

components the relatives know.  

 

► Paradox 

► To enforce (1), the designer may have to add 

intermediate components (containers, controllers 

or brokers or facades). 

► This tends to contravene (2) 
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Input-driven v Model-driven 

► Inputs feed state change events to the data servers 

 

 

 

 

 

 

 

► A data server publishes state change events to UI views 
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pupilTransfer (PupilNum, NewSchoolNum): Error 

addPupil (NewSchoolNum): NoRoomError 

removePupil (OldSchoolNum) 

pupilTransfer (PupilNum, NewSchoolNum) 

PupilTransfer Pupil School (new) School (old) Command 
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