
Avancier

Copyright Avancier Limited 2007-2016

Avancier Methods
Very basic design patterns

It is illegal to copy, share or show this document

(or other document published at http://avancier.co.uk)

without the written permission of the copyright holder

http://avancier.co.uk/

Avancier
Design patterns

► There are patterns for

■ enterprise architecture

■ solution architecture

■ software architecture

► A design pattern is a general shape that recurs in many cases

► It should

■ be a general solution to a general design problem

■ be a tried and tested design

■ speed up development

■ encourage consistency, help standardise how design is done in an enterprise.

■ reduce the risk of reliance on an individual designer.

Copyright Avancier Limited 2007-2016

Avancier
Patterns as diagrams

► Some patterns are available in the form of code.

► But patterns are usually represented in diagrams

Copyright Avancier Limited 2007-2016

“If you think you have a pattern, you must be able to draw a diagram of it.

This is a crude, but vital rule. “

“If you can't draw it, it isn't a pattern.”

“A pattern defines a field of spatial relations, and it must always be

possible to draw a diagram for every pattern. “
Christopher Alexander (1979) in The Timeless Way of Building

Avancier
Encapsulation

► Many design patterns are based an assumption

► Each component in it is encapsulated and defined by

■ its input/output interface

■ the discrete events it can process and services it can offer.

► On its own, encapsulation isn’t a pattern

► But it is usually assumed in other patterns.

Copyright Avancier Limited 2007-2016

Avancier

Copyright Avancier Limited 2007-2016

A simple and common pattern: Façade

Problem:

►How can a client avoid being too

tightly coupled with a server

subsystem?

►How to aggregate services into a

coarser-grained component?

Solution:

► Introduce a façade that provides a

unified interface for different clients,

and makes the subsystem easier to

use

►So clients know what the subsystem

does for them, but nothing else

Server system

E
D

C

B
A

Client 3

Client 2

Client 1

E
D

C

B
A

Client 3

Client 2

Client 1

Fac

Avancier
Fowler example of a Facade

► The façade simplifies a remote invocation for an address

Copyright Avancier Limited 2007-2016

Avancier
Alternative patterns

► Capable architects

■ understand the available patterns

■ look to use them in the right circumstances

■ choose between alternative patterns by trading off their pros and cons

Copyright Avancier Limited 2007-2016

Avancier
Alternative patterns: Centralisation and Distribution

A never-ending debate

How far should powers be

► distributed to many nodes/places?

► centralised in one node/place?

Copyright Avancier Limited 2007-2016

a “Europe of Regions”?

Avancier

Distributing

Centralising

Alternative patterns to be discussed

Copyright Avancier Limited 2007-2016

Chain/Choreography

All interact and cooperate:

distributes intelligence about

a process

Fork/Orchestration

One schedules and directs

the others: centralises

intelligence about a process

CRM Billing ERP

Controller

CRM Billing ERP

Point to Point

Hub and Spoke

F ERP

E Billing

CRM

DW

F ERP

E Billing

CRM

DW

Hub

Hierarchical layering

Peer to Peer

Client

layer

Server

layer

Client

Server

Client

Server

System

System

Component

Component

Component

Component

Avancier
Point to Point v Hub and Spoke

Copyright Avancier Limited 2007-2016

► Subsystems talk to each other directly.

► Can be faster and simpler

► OK where

■ inter-component communication is 1 to 1

■ components at either endpoint are stable.

► Subsystems communicate via some kind of

mediator or middleware.

► Can be more complex and slower than point-to-

point integration.

► Better where

■ inter-component communication is many to many

■ components at either endpoint are volatile.

Point to Point

Hub and Spoke

F ERP

E Billing

CRM

DW

F ERP

E Billing

CRM

DW

Hub

Avancier
Hierarchical layer v Peer to Peer

► Oft used to structure a complicated system.

■ Machine architecture (programming language, OS,

device drivers and CPU instruction sets, logic gates inside

chips)

■ Network architecture (FTP, TCP, IP, Ethernet).

► Software architecture (UI, Logic, Database)

► Sometimes said to be a bad thing

► fragile and unstable structure

► difficult to understand and maintain

► undermine testability, parallel development,

and reuse.

Copyright Avancier Limited 2007-2016

Hierarchical layering

Peer to Peer

Client

layer

Server

layer

Client

Server

Client

Server

Subsystem

Subsystem

Component

Component

Component

Component

Avancier
Peer-to-peer structures

► Given a system structure with co-dependent components

► Suppose you restructure it to eliminate all cyclic dependencies?

► The result will be a hierarchically-layered structure

Copyright Avancier Limited 2007-2016

Cyclical “dependency” arrows

Order Product

Avancier

Copyright Avancier Limited 2007-2016

Hierarchically layered structure

► Higher-level components depend on lower-level ones, but not vice-versa

► The structure often resembles what Barry Boehm called a Mosque Shape.

Order Product

Avancier
Hierarchical layering in enterprise applications

► Variations of a three-layer software architecture are common

Copyright Avancier Limited 2007-2016

Business
Domain

Layer

Data source
Layer

UI/Presentation
Layer

Avancier
Software Layers <> Platform Tiers

► Layers and Tiers influence each other

► But don’t perfectly correspond

Copyright Avancier Limited 2007-2016

Business Domain Layer
The business logic that is the function of the system.
Triggered by commands and queries.

Data source layer
Communication with databases, transaction managers,
messaging systems etc.

UI/Presentation Layer
e.g. HTTP requests.
Display of windows or HTML pages

Web/App Server
Tier

Client Device
Tier

Network

Data Server Tier

Network

Avancier
Where are business domain rules executed?

► A mantra of early OO design was that all business rules belong (in

domain objects) in the app server tier

In practice

► Validation of input data items against data types ->

► Workflow logic and some business rules ->

► Data integrity and other data-bound rules ->

Copyright Avancier Limited 2007-2016

Web/App Server
Tier

Client Device
Tier

Network

Data Server Tier

Network

Avancier
Fork/Orchestration v Chain/Choreography

Copyright Avancier Limited 2007-2016

Chain/Choreography

All interact and cooperate:

distributes intelligence about a

process

Fork/Orchestration

One schedules and directs

others: centralises intelligence

about a process

CRM Billing ERP

Controller

CRM Billing ERP

► Fork/Orchestration:

■ centralises intelligence about a process sequence in a

workflow controller that supervises and orchestrates the

procedure.

■ A controller directs other components to complete the

process.

■ It manages the sequence of activities by invoking

components in turn.

► Chain/Choreography:

■ distributes intelligence about a process sequence

between several entity or domain components.

■ Components cooperate to complete the process.

■ Each component does part of the work, then calls the

next component (cf. pipe and filter.)

Avancier

Copyright Avancier Limited 2007-2016

Fork/Orchestration v Chain/Choreography

Fork: A controller orchestrates the Domain Objects

Chain: Domain Objects cooperate to perform a transaction

pupilTransfer (PupilNum, NewSchoolNum): Error

removePupil (OldSchoolNum)

addPupil (NewSchoolNum): NoRoomError

Command :School (new) :School (old) :Pupil

:PupilTransfer :Pupil

pupilTransfer (PupilNum, NewSchoolNum): Error

:School (new) :School (old)

pupilTransfer (PupilNum): OldSchoolNum

removePupil (OldSchoolNum)

addPupil (NewSchoolNum): NoRoomError

Command

Transaction or
Session

Controller

Avancier
Alternative patterns

► Capable architects

■ understand the available patterns

■ look to use them in the right circumstances

■ choose between alternative patterns by trading off their pros and cons.

► You should understand

■ the problem you have;

■ the problem the pattern is intended to solve;

■ the benefits, costs and alternatives;

■ the trade-offs between alternative patterns

■ whether the pattern is or should be a local standard.

Copyright Avancier Limited 2007-2016

Avancier

Copyright Avancier Limited 2007-2016

What can we learn from Software Design Patterns?

► All system design is about

■ designing required processes

■ dividing the system into actors/components.

■ organising the actors/components to perform processes

► At least some Software Design Patterns are relevant to

■ enterprise application integration

■ the design of human activity systems

Avancier
Beware

► “Patterns are a starting point…

► “Every pattern is incomplete…

► “You have the responsibility of completing it in the context of your

own system”

► Martin Fowler

Copyright Avancier Limited 2007-2016

Avancier
Footnotes

► Classic patterns in enterprise application architecture

► GRASP pattern

► Demeter’s law

Copyright Avancier Limited 2007-2016

Avancier
Classic patterns in enterprise application architecture

► Transaction script

■ Centralises intelligence about the process for an event or enquiry

■ A simple procedural model – needs only a simple data source layer

■ Start with opening a transaction and end with closing it

► Object-oriented

■ Distributes intelligence about a process between entities

■ Table module

● One object for each database table (record set)

■ Domain model

● One object for each entity instance

● Simple domain model: mostly 1 OO class to 1 database table

● Rich domain model: complex class to table mapping

□ “anecdotal observations put the effort of mapping to a relational database at around a

third of programming effort—a cost that continues during maintenance.” Fowler

Copyright Avancier Limited 2007-2016

Avancier
Choosing between patterns

► Fowler drew this graph

► Limiting the use of rich

domain models to highly

complex situations

► OO book authors like to

write about those

situations

Avancier
Transaction script

► “However much of an object bigot you become, don’t rule out Transaction

Script.

► There are a lot of simple problems, and a simple solution will get you up and

running much faster.”…

► “Many… scripts act directly on the database, putting SQL into the procedure.”

► “The simplest Transaction Scripts contain their own database logic”

Copyright Avancier Limited 2007-2016

 Transaction Script

The procedure

may share

 subroutines

School-Pupil
Database

Replace Pupil Foreign Key

Update Old School

Update New School

:PupilTransfer

pupilTransfer (PupilNum, NewSchoolNum): Error

Command
This is still model of a kind!

Avancier
By the way

► Fowler drew these diagrams to

illustrate how each pattern works

for “calculating revenue

recoginations” in a case study

Avancier
The GRASP pattern

► A good designer can mix alternative patterns

► Use each pattern where it is appropriate.

► The GRASP pattern can be used to design a structure than

compromises between

■ Fork/Orchestration

■ Chain/Choreography styles.

Copyright Avancier Limited 2007-2016

Avancier

Copyright Avancier Limited 2007-2016

The General Responsibility Assignment Software Pattern

► Craig Larman uses it to advance various principles for designing the
interactions between components, including these five

GRASP Meaning

Expert
Assign a responsibility to the expert component, which has the data to

fulfil the responsibility

Creator
Assign a responsibility for creating an object (or entity instance) to the

component that collects or holds the object’s initial data

Low-Coupling Ensure coupling between components remains low.

High-Cohesion Ensure cohesion within a component remains high.

Controller Create components to handle events in the end-to-end process

Avancier

:PupilTransfer :Pupil

pupilTransfer (PupilNum, NewSchoolNum): Error

:School (new) :School (old)

pupilTransfer (PupilNum),

NewSchoolNum :

addPupil (NewSchoolNum): NoRoomError

Command

removePupil (OldSchoolNum)

Copyright Avancier Limited 2007-2016

Application of the GRASP design pattern

► The system remembers

■ the names of Schools

■ the Pupils currently registered in each School

■ the PupilTotal for each School.

► If the new School’s maximum number of pupils if not exceeded, and the

Pupil Transfer event completes, then a Pupil will be moved from his/her

current School to his/her new School,

Avancier
Demeter’s Law

► (1) A component should know only a few (<6?)

other closely-related components.

► (2) A component should talk only to its immediate

relatives; not ‘reach through’ them to talk to

components the relatives know.

► Paradox

► To enforce (1), the designer may have to add

intermediate components (containers, controllers

or brokers or facades).

► This tends to contravene (2)

Copyright Avancier Limited 2007-2016

Avancier
Input-driven v Model-driven

► Inputs feed state change events to the data servers

► A data server publishes state change events to UI views

Copyright Avancier Limited 2007-2016

pupilTransfer (PupilNum, NewSchoolNum): Error

addPupil (NewSchoolNum): NoRoomError

removePupil (OldSchoolNum)

pupilTransfer (PupilNum, NewSchoolNum)

PupilTransfer Pupil School (new) School (old) Command

Show Report

Event Trade Unit Price Stock/Share View

