| - __| Avancier

There is an

Avancier Methods (AM)
address for

Adaptive Architecture comments at
A first draft or manifesto v8

It is illegal to copy, share or show this document
(or other document published at http://avancier.co.uk)
without the written permission of the copyright holder

Copyright Avancier Limited 2011

I —
]
Contents]

| - __| Avancier

» The challenge

» Adaptive architecture techniques

» 20 Questions about adaptive architecture
» Relaxing version control

Copyright Avancier Limited 2011

]
]
Adaptive architecture techniques I]

| - __| Avancier

Modularity is (of course) the central idea.

If you want systems to be adaptive and enable agile change, then
you'll need to:
1. Encapsulate smaller Components
Separate larger Components
Make continuous small-scale incremental changes
Plan to allow inconsistency and restore integrity
Change locally, small and fast
lterate around short test and change cycles
Value the human mind
Organise Components under a hierarchical taxonomy
9. Refactor in a good direction
10. Shift low level relationships up one level
11. Establish interoperability principles and standards

Copyright Avancier Limited 2011

© N OA DN

1. Encapsulate smaller Components

» Encapsulate smaller Components that are (relatively) closely
related within larger Components that are (relatively) unrelated.

Avancier

~

4 Component)

Component

Component

System

Component

~

N

/

/

Component

Component

Component

~

Copyright Avancier Limited 2011

]
]
2. Separate larger Components I o

Avancier

» Minimise the coupling between larger Components, so they:
» Are independent - can process inputs and requests asynchronously

/ System \
/Component\ / Component \ / Component \

‘
\
(e

Component

Component)--r

\
\

Copyright Avancier Limited 2011

]
]
3. Make continuous small-scale incremental changes I .

Avancier

» Continually (in reaction to needs and inconsistencies) improve
or replace small and relatively discrete Components.

“Cross the river by feeling for the stones”
attributed to Deng Xiaoping

» Occasionally refactor the overall structure and redistribute
responsibilities between larger Components.

Copyright Avancier Limited 2011

Avancier

4. Plan to allow inconsistency and restore integrity

“Nothing we design ever really works...
Everything we design and make is an
improvisation, a lash up, something inept
and provisional.” David Pye

» In practice, architects sometimes
m allow inconsistencies between Components to persist, or

m design such that inconsistencies between Components are alternately
created and then fixed by integrity-correction processes (or compensating

transactions)

» However, adaptive architecture requires you to
1. Allow inconsistencies between Components
2. Detect inconsistencies created by changes
3. Restore integrity as soon as practically possible

Copyright Avancier Limited 2011

]
]
Example: Integrity in state 3 I .

| - __| Avancier

» Suppose this enterprise-wide system is in a consistent state

Wider Enterprise v3

System A v3 System B v2
P v1 Q v3 T v Uv2
T T~
Rv2 Svi V v2 W v1

Copyright Avancier Limited 2011

]
]
Example: Allow inconsistencies between Components I]

Avancier

Changing system B introduces some inconsistencies

“Your first try will be wrong. Budget and design for it”.
Aza Raskin, designer at Firefox

To maintain the wider enterprise as system, architects must
continually look and test for inconsistencies created by changes

Wider Enterprise v4

System A v3 System B v3
Pv1 Qv3 T v2 Uv3

Rv2 S vi Vv2 W v

Copyright Avancier Limited 2011

]
]
Example: Restore integrity as soon as practically possible I .

Avancier

» Changing System A and Component W restores integrity

» Deliberate relaxation and restoration of integrity enables us to
grow the wider system by small lost cost low impact increments

Wider Enterprise v5

System A v4 System B v3

P v Q VJ T v2 Uv3

Rv2 S v2 V v2 @VZ

Copyright Avancier Limited 2011

]
]
Assumptions and implications I .

Avancier

Adaptive architecture | Assumptions and implications
requires you to

Allow inconsistencies When a change creates an inconsistency between

between Components, the wider system will work well
Components enough for while
Detect inconsistencies | Architects will remember or recognise
created by changes inconsistencies by
a. Noting them during continuous incremental
improvement
b. Continuous testing
Restore integrity as Architects will schedule further changes to restore
soon as practically | integrity by continuous incremental improvement
possible

Copyright Avancier Limited 2011

]
]
5. Change locally, small and fast I]

| - __| Avancier

» Proactive change management
m takes a change request
m refers upwards and outwards for approval

m takes as long and costs as much as it takes

» to prevent all inconsistencies in the widest system configuration
through bureaucratic change control and configuration management

m before the next system version is released.

» Reactive change management
m takes a change request
m delegates impact analysis and change
m implements the changes in a small time and cash box, then
m responds to inconsistencies discovered in operation

Copyright Avancier Limited 2011

]
]
6. Iterate around short test and change cycles I o

Avancier

» To respond to inconsistencies in operation

» All architects, designers and builders must continually
» Monitor changes made and test them
» Look for inconsistencies created between Components

» Work to realign Components in small incremental steps as
soon as possible after a requirement is detected

“The scientist must constantly seek and hope for surprises”
Robert Friedel

Copyright Avancier Limited 2011

-
-
7. Value human intelligence and flexibility I -

| - __| Avancier

Some architecture description documentation is needed, will
help, but it is

» never complete, usually imperfect
» only good where it is maintained
» no substitute for knowledge.

Value the human mind

» Assign each Component for maintenance to a principal
responsible architect or designer

» Assign a group of related Components to a group of
interacting architects or designers.

» Reward members of the group for teaching each other about
their Components (cf. peer programming)

Copyright Avancier Limited 2011

1
1
7. Value human intelligence and flexibility (cont.) IA —

» Adaptive architecture suits human activity systems because
m Humans can detect things going wrong
m Humans can invent and execute workarounds at run-time
m Humans can report faults and redesign

“In the absence of guidance or orders,
figure out what they should have been...”
On a command post door in Baghdad,
commandeered by David Petraeus

Copyright Avancier Limited 2011

.
1
8. Organise Components under a hierarchical taxonomy I 1

Avancier

» Hierarchical structures are the way EESEIET)
humans have always managed size — Subsystem |
and complexity —{ A]
B
» Grouping related Components helps _ X]
you
m Manage them — Subsystem |
m Detect and minimise duplications [D J
m Analyse change impacts —{ E]
— X J
» (Minimise other indices to the —(Subsystem |
content - because maintaining — F]
indices disables agility) —{ G]
D G

Copyright Avancier Limited 2011

]
]
Q) Do we need a top-level structure to begin with? I .

Avancier

» Not always.

» Adaptive architecture can start with a single Component
» And grow large systems from small ones.

Copyright Avancier Limited 2011

]
]
9. Refactor in a good direction I .

Avancier

| System]

—{ Subsystem |
—{ A] » The challenge with any hierarchical
—{ B] structure is how best to manage
L X] common components

—{ Subsystem |
| D) P You can re-factor a structure in at least
_[E] three ways
- X] m Restructuring

m Delegation and

—{ Subsystem |

m Duplication

F
— = | » Ingenuity is needed to “make changes
—) in a good direction”.
— X)

“He made mistakes in a good direction” Goro Shimura on his friend Yutaka Taniyama

Copyright Avancier Limited 2011

If X provides high- —
level services L]

Avancier

Refactoring by restructuring

[System | ([System |

—{ Subsystem) _Subsystem
—{ A]
— B] — A)
—(— x) —_ B8]

—{ Subsystem | —{ Subsystem |
I N
[—(_E]

X

. Subsvs_t[em]) — Subsystem |
- { F] —{ F)
i G] — G)
—x O My Hx

» Component merits management at a higher level

Copyright Avancier Limited 2011

If global change to I .

Refactoring by delegation X Is anticipated -

Avancier

[System) ([System |
— S“bs‘ﬂ‘[’m) .] — Subsystem)
- R— A
— X) [B]
— Subsystem | Subsvstem
— D] ‘ B :]
— X) [E J
" Subsystem) | Subsystem |
— F)
B =] — F J
— X) [G]
» Helps to ensure integrity (Shared | » Governance
» But it also creates a mutual X) needed to
dependency between the manage the
delegator Subsystems L directory’s
—__ Z] scope and use

Copyright Avancier Limited 2011

If local agility of X]
f PR IS needed —
Refactoring by duplication]

Avancier

([System)
— Subsystem |

A catalogue may be

— A) used to remember
— B) where copies are
— X]

—(Subsystem) (Duplicated]

—{ Subs})
F]
G]

X]

IR
3
TT T
AL
N| | <

» The same Component in several larger systems

» Enables loose coupling and temporary
inconsistencies between the larger systems

Copyright Avancier Limited 2011

]
L
On the art of making things simpler I .

| - __| Avancier

“Any intelligent fool can make things
bigger, more complex... It takes a touch
of genius — and a lot of courage —to
move in the opposite direction”
Attributed to E.F Schumacher

» Adaptive architecture favours

m Modular structures

m Loose coupling where inconsistency can be lived with
m Hierarchical structures over network structures.
[|

Relationships to/from coarse-grained Components rather than
low-level Components.

Copyright Avancier Limited 2011

]
]
10. Shift low level relationships up one level I o

Avancier

> You can decrease low-level coupling between low-level r'?‘utrﬁgr‘]nsi?/gtee;gg
smaller Components in different nodes by using the next more than
higher-level Components as brokers or facades. software systems
System | | System | L
—{ Component | —{ Component |
S g
—__ B —__ B
— Component | — Component]-/
gL = :
-« —[
—{ Component | — Component
- F -
' G —{ G

Copyright Avancier Limited 2011

]
]
11. Establish interoperability principles and standards I o

| - __| Avancier

» Adaptive architecture does imply some up-front design

» Every designer design must design thinking that
m Components will be related
m Components will be replaced
m Overarching structures will be refactored

» So, if a large system is envisaged then,

» then to ensure Components are interoperable
» designers ought to start out with principles and standards that help

Copyright Avancier Limited 2011

L
L
Q) What helps interoperability between components? I .

| - __| Avancier

» A common inter-component language
m common terminology

common data types

common data flow / message structures

a canonical data model.

» Readily usable communication channels
m a communication network
m common protocols for use of the network

» Be cautious about
m putting intelligence into the communication channels
m using middleware everywhere

Copyright Avancier Limited 2011

]
]
Q) Are governing architects needed? I .

Avancier

» It helps. Adaptive architecture needs enterprise architects who
facilitate solution architects in the design and delivery of point
solutions, and encourage interoperabllity.

» Think less of governors as policemen, though we know
m Top-level managers have to make decisions, sometimes ill-informed

m Enterprise architects are sometimes employed as policemen to enforce
the cascade of those decisions

» Think more of governing architects as mid-wives
m Enterprise architects work with solution architects
m Look for the wider integration needs of a point solution
m Look for common standards that can be used
m Look to generalise and disseminate what they learn from point solutions.

Copyright Avancier Limited 2011

The end

» The challenge

» Adaptive architecture techniques

» 20 Questions about adaptive architecture
» Relaxing version control

Most of the quotes are taken from
“Adapt” by Tim Harford 2011

S~

Avancier

Send comments to

grahamberrisford@gmail.com

B

-

Copyright Avancier Limited 2011

