
Copyright Avancier Limited 2011

Avancier

Avancier Methods (AM)

Adaptive Architecture
A first draft or manifesto v8

It is illegal to copy, share or show this document 

(or other document published at http://avancier.co.uk)

without the written permission of the copyright holder

There is an 
address for 

comments at 
the end



Copyright Avancier Limited 2011

Avancier

Contents

► The challenge

► Adaptive architecture techniques

► 20 Questions about adaptive architecture

► Relaxing version control



Copyright Avancier Limited 2011

Avancier

Adaptive architecture techniques

Modularity is (of course) the central idea.

If you want systems to be adaptive and enable agile change, then
you’ll need to:

1. Encapsulate smaller Components

2. Separate larger Components

3. Make continuous small-scale incremental changes

4. Plan to allow inconsistency and restore integrity

5. Change locally, small and fast

6. Iterate around short test and change cycles

7. Value the human mind

8. Organise Components under a hierarchical taxonomy

9. Refactor in a good direction

10.Shift low level relationships up one level

11.Establish interoperability principles and standards



Copyright Avancier Limited 2011

Avancier

System

Component

1. Encapsulate smaller Components

► Encapsulate smaller Components that are (relatively) closely 
related within larger Components that are (relatively) unrelated.

ComponentComponent

Component

Component

Component

Component

Component

Component

Component

ComponentComponent

Component

Component

Component

Component



Copyright Avancier Limited 2011

Avancier

System

Component

2. Separate larger Components

► Minimise the coupling between larger Components, so they:

► Are independent - can process inputs and requests asynchronously

ComponentComponent

Component

Component

Component

Component

Component

Component

Component

ComponentComponent

Component

Component

Component

Component



Copyright Avancier Limited 2011

Avancier

3. Make continuous small-scale incremental changes

► Continually (in reaction to needs and inconsistencies) improve 
or replace small and relatively discrete Components.

► Occasionally refactor the overall structure and redistribute 
responsibilities between larger Components.

“Cross the river by feeling for the stones”
attributed to Deng Xiaoping



Copyright Avancier Limited 2011

Avancier

4. Plan to allow inconsistency and restore integrity

► In practice, architects sometimes 

■ allow inconsistencies between Components to persist, or

■ design such that inconsistencies between Components are alternately 

created and then fixed by integrity-correction processes (or compensating 

transactions)

► However, adaptive architecture requires you to

1. Allow inconsistencies between Components

2. Detect inconsistencies created by changes

3. Restore integrity as soon as practically possible

“Nothing we design ever really works…
Everything we design and make is an 

improvisation, a lash up, something inept 
and provisional.” David Pye



Copyright Avancier Limited 2011

Avancier

Example: Integrity in state 3 

► Suppose this enterprise-wide system is in a consistent state

Wider Enterprise v3

System A v3 System B v2

P v1 Q v3 T v1 U v2

R v2 S v1 V v2 W v1



Copyright Avancier Limited 2011

Avancier

Example: Allow inconsistencies between Components

Changing system B introduces some inconsistencies

To maintain the wider enterprise as system, architects must 
continually look and test for inconsistencies created by changes

Wider Enterprise v4

System A v3 System B v3

P v1 Q v3 T v2 U v3

R v2 S v1 V v2 W v1

“Your first try will be wrong. Budget and design for it”.
Aza Raskin, designer at Firefox



Copyright Avancier Limited 2011

Avancier

Example: Restore integrity as soon as practically possible

► Changing System A and Component W restores integrity

► Deliberate relaxation and restoration of integrity enables us to
grow the wider system by small lost cost low impact increments

Wider Enterprise v5

System A v4 System B v3

P v1 Q v4 T v2 U v3

R v2 S v2 V v2 W v2



Copyright Avancier Limited 2011

Avancier

Assumptions and implications

Architects will schedule further changes to restore 

integrity by continuous incremental improvement

Restore integrity as 

soon as practically 

possible

Architects will remember or recognise 

inconsistencies by

a. Noting them during continuous incremental 

improvement

b. Continuous testing

Detect inconsistencies 

created by changes

When a change creates an inconsistency between 

Components, the wider system will work well 

enough for while

Allow inconsistencies 

between 

Components

Assumptions and implicationsAdaptive architecture 
requires you to



Copyright Avancier Limited 2011

Avancier

5. Change locally, small and fast

► Proactive change management 

■ takes a change request 

■ refers upwards and outwards for approval

■ takes as long and costs as much as it takes 

● to prevent all inconsistencies in the widest system configuration 

through bureaucratic change control and configuration management

■ before the next system version is released. 

► Reactive change management 

■ takes a change request 

■ delegates impact analysis and change

■ implements the changes in a small time and cash box, then 

■ responds to inconsistencies discovered in operation



Copyright Avancier Limited 2011

Avancier

6. Iterate around short test and change cycles

► To respond to inconsistencies in operation

► All architects, designers and builders must continually

► Monitor changes made and test them

► Look for inconsistencies created between Components

► Work to realign Components in small incremental steps as 
soon as possible after a requirement is detected

“The scientist must constantly seek and hope for surprises”
Robert Friedel



Copyright Avancier Limited 2011

Avancier

7. Value human intelligence and flexibility

Some architecture description documentation is needed, will 
help, but it is

► never complete, usually imperfect

► only good where it is maintained

► no substitute for knowledge.

Value the human mind

► Assign each Component for maintenance to a principal 
responsible architect or designer

► Assign a group of related Components to a group of 
interacting architects or designers.

► Reward members of the group for teaching each other about 
their Components (cf. peer programming)



Copyright Avancier Limited 2011

Avancier

7. Value human intelligence and flexibility (cont.)

► Adaptive architecture suits human activity systems because

■ Humans can detect things going wrong

■ Humans can invent and execute workarounds at run-time

■ Humans can report faults and redesign

“In the absence of guidance or orders, 
figure out what they should have been…”

On a command post door in Baghdad, 
commandeered by David Petraeus



Copyright Avancier Limited 2011

Avancier

8. Organise Components under a hierarchical taxonomy

► Hierarchical structures are the way 
humans have always managed size 
and complexity 

► Grouping related Components helps 
you

■ Manage them

■ Detect and minimise duplications

■ Analyse change impacts

► (Minimise other indices to the 
content - because maintaining 
indices disables agility)

System

Subsystem

Subsystem

Subsystem

A

B

D

E

F

G

X

X

X



Copyright Avancier Limited 2011

Avancier

Q) Do we need a top-level structure to begin with?

► Not always. 

► Adaptive architecture can start with a single Component

► And grow large systems from small ones.



Copyright Avancier Limited 2011

Avancier

9. Refactor in a good direction

► The challenge with any hierarchical 

structure is how best to manage 

common components

► You can re-factor a structure in at least 

three ways

■ Restructuring

■ Delegation and 

■ Duplication

► Ingenuity is needed to “make changes 

in a good direction”.

System

Subsystem

Subsystem

Subsystem

A

B

D

E

F

G

X

X

X

“He made mistakes in a good direction” Goro Shimura on his friend Yutaka Taniyama



Copyright Avancier Limited 2011

Avancier

Refactoring by restructuring

► Component merits management at a higher level

System

Subsystem

Subsystem

Subsystem

A

B

D

E

F

G

X

X

X

System

Subsystem

Subsystem

Subsystem

A

B

D

F

E

G

X

If X provides high-
level services



Copyright Avancier Limited 2011

Avancier

Refactoring by delegation

► Helps to ensure integrity

► But it also creates a mutual 
dependency between the 
delegator Subsystems

System

Subsystem

Subsystem

Subsystem

A

B

D

E

F

G

X

X

X

Shared

X

Y

Z

System

Subsystem

Subsystem

Subsystem

A

B

D

E

F

G

► Governance 
needed to 
manage the 
directory’s 
scope and use

If global change to 
X is anticipated



Copyright Avancier Limited 2011

Avancier

Refactoring by duplication

► The same Component in several larger systems

► Enables loose coupling and temporary 
inconsistencies between the larger systems

System

Subsystem

Subsystem

Subsystem

A

B

D

E

F

G

X

X

X

Duplicated

X

Y

Z

A catalogue may be 

used to remember 

where copies are

If local agility of X 
is needed



Copyright Avancier Limited 2011

Avancier

On the art of making things simpler

► Adaptive architecture favours 

■ Modular structures

■ Loose coupling where inconsistency can be lived with

■ Hierarchical structures over network structures.

■ Relationships to/from coarse-grained Components rather than 

low-level Components.

“Any intelligent fool can make things 
bigger, more complex... It takes a touch 

of genius – and a lot of courage – to 
move in the opposite direction”
Attributed to E.F Schumacher



Copyright Avancier Limited 2011

Avancier

10. Shift low level relationships up one level

► You can decrease low-level coupling between low-level 

smaller Components in different nodes by using the next 

higher-level Components as brokers or facades.

System

Component

Component

Component

A

B

D

E

F

G

System

Component

Component

Component

A

B

D

E

F

G

A technique for 
human systems 

more than 
software systems



Copyright Avancier Limited 2011

Avancier

11. Establish interoperability principles and standards

► Adaptive architecture does imply some up-front design

► Every designer design must design thinking that 

■ Components will be related

■ Components will be replaced

■ Overarching structures will be refactored

► So, if a large system is envisaged then, 

► then to ensure Components are interoperable

► designers ought to start out with principles and standards that help



Copyright Avancier Limited 2011

Avancier

Q) What helps interoperability between components?

► A common inter-component language

■ common terminology

■ common data types

■ common data flow / message structures 

■ a canonical data model.

► Readily usable communication channels

■ a communication network

■ common protocols for use of the network

► Be cautious about

■ putting intelligence into the communication channels

■ using middleware everywhere



Copyright Avancier Limited 2011

Avancier

Q) Are governing architects needed?

► It helps. Adaptive architecture needs enterprise architects who 
facilitate solution architects in the design and delivery of point 
solutions, and encourage interoperability.

► Think less of governors as policemen, though we know

■ Top-level managers have to make decisions, sometimes ill-informed

■ Enterprise architects are sometimes employed as policemen to enforce 

the cascade of those decisions

► Think more of governing architects as mid-wives

■ Enterprise architects work with solution architects

■ Look for the wider integration needs of a point solution

■ Look for common standards that can be used

■ Look to generalise and disseminate what they learn from point solutions.



Copyright Avancier Limited 2011

Avancier

The end

► The challenge

► Adaptive architecture techniques

► 20 Questions about adaptive architecture

► Relaxing version control

Send comments to 
grahamberrisford@gmail.com

Most of the quotes are taken from
“Adapt” by Tim Harford 2011


