Book

The Entity Modeler

New patterns and transformations for structural
modeling

V7
SORRY NO UML YET, BUT THIS DRAFT IS REVIEWABLE

The copyright in this work is vested in Graham Berrisford and the information contained herein is confidential.
This work (either in whole or in part) must not be modified, reproduced, disclosed or disseminated to others or used for
purposes other than that for which of Graham Berrisford.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 2

Contents

R o1 oo 11 {1 o] o ISR 5
2. PIEIACE ... bbbt 7
3. PART ONE: BUSINESS RULES IN ENTITY MODELS. ..o 9
4. BusIiness rules in entity MOGEIS...........coviiiiiiii e 10
5. From data model to entity MOdelccooiiiiiiiii 22
6. PART TWO: ENTITY MODEL PATTERNS AND TRANSFORMATIONS. 34
7. Patterns in entity MOGEISooviiiiii s 35
8. Nine simple model transformations............c.ccviieiiiii e 40
9. Patterns in simple relatioNShiPS.........cooiiiiiii s 52
10. Patterns in relational data analysis............ccccoiieiiiiieiicie i 64
11. Why entity modeling iS NOt ENOUGNcccoviiiiiieeeee e 73
2 V= o 1Y/ oo 11 T o OSSPSR 75
13. More entity MOdel SNAPESc.ooiiieie s 81
14. Advanced entity model SNAPES...........cciiieiiie e 102
15. Design fOr MAINTENANCEc.oiiiiiieiieite ettt 112
16. PART THREE: RECURSIVE ENTITY MODEL SHAPES.ccooiiiiiiiiiieien 124
17. Kinds Of FECUISIVE STFUCTUIEccueeiiieieieeieeie et sre e anes 125
18. Things to 100k for in recursive StrUCTUIES...........coveviiiiiiecie e 129
19. Two patterns for fixed-depth reCUrSIONcoeiiiiiiiiiiree e 133
20. Examples of constrained liNear reCUISION...........cccuciveiieiierieeie e et 138
21. Conclusions drawn from the case Studies iN FECUISION.........cccovrerierenininisieieeens 141
22. PART FOUR: CLASS HIERARCHIES. ..ottt 143
23. Bottom-up Class NIErarChIES..........ccuiiiiiieiiieee e 144
24. Top-down class NIErarChies...........cccociiiiiiiice e 155
25. Class hierarchies in PraCtiCecoiiiiieiiiees e 161
26. Interpreting polymorphism as event effeCtS.........ccocvviiniiiiiiii i 172
27. PART FIVE: AGGREGATE ENTITIEScoiiiiii et 174
The entity modeler

Structural model patterns and transformations Version: 7
Copyright Graham Berrisford 01 Jan 2005

Page 3

28.
29.
30.
31.
32.
33.
34.
35.
36.
37.

Aggregate entities (COMPOSITE CIASSES)veivrerviiiieiieiie e 175

PART SIX: DEEPER THOUGHTS ABOUT ENTITY MODELScccooovveeinn, 184
Five Kinds of entity Model...........ccooiiioiieic e 185
Subclasses and parallel aSPECLS..........ccviiiiiiiiei e 194
DESIGN ISSUESc.veeuvieeiesieeste e et este et e s te et e et e st e e e e s s e e be et e e seesseesteeneeateeteeneeaneesreennennes 206
From design patterns to analysis Patterns ..o 218
Appendix A: very general PrinCIPIES.......c.oiviiiiie e 232
Appendix B: On the SmallTalk paradigm ..o 234
Appendix D: Object-oriented analysis in the UKcccoveiiiiiiccecic e, 238
APPENAIX C: RETEIEINCES ... 240

The entity modeler
Structural model patterns and transformations Version: 7
Copyright Graham Berrisford 01 Jan 2005

Page 4

1. Introduction

This is not the first book on entity modelling for enterprise applications. This one begins by reviewing
well-established principles. But it goes on to say many new things, and it ends up challenging the
prevailing orthodoxies.

Is this a book on logical data modeling for analysts? Yes. It is certainly about ways to define a
logical data model that specifies business rules.

Is this a book on physical data modeling for database designers? Not really. It does have some
relevance to defining a physical data model that becomes an efficient database structure, but this is not
the main aim.

Is this a book on class diagramming for OO programmers? Yes. It is meant to be about ways to
define an OOP "class diagram" that can be implemented as Java on an app server.

This book is perhaps the first to take a view of entity modelling that spans conventional relational data
analysis and object-oriented software design for enterprise applications. It presents principles that
apply to drawing database schemas and object-oriented class diagrams. It suggests object-oriented
and relational paradigms are narrow views of a broader field.

The book presents a new knowledgebase of patterns for drawing an entity model. Entity model
patterns are analysis patterns first and design patterns second. The analysis goal is to find out what
the business rules are and specify them correctly. The design goal is to design a structure that meets
performance requirements and can be readily maintained. The book presents a new knowledgebase of
transformations between closely related patterns that help you to meet these goals.

Readers will range from analysts and designers working on enterprise applications, to students of
computer science. For readers familiar with UML, an entity model is a kind of a class diagram; you may
choose to stereotype the classes with <<entity>> under the class name.

1.1 Professional analysts and designers

It has been reported that 70% of the world’s programmers are writing code for enterprise client-server
systems. An enterprise application supports a business by providing it with information about the real-
world objects that the business seeks to monitor and perhaps control.

At the back end of an enterprise application are the layers of software that manage the stored data.
Software that manages data about the real world is crucial. The enterprise has to invest a lot of time
and money in specifying and coding business rules to ensure its stored data tells a true and consistent
story about the business domain the enterprise operates in. Data integrity is the challenge for
enterprise architects.

“If users don't trust your data, your database is garbage” IT director of a major
telecommunications company.

“Problems with data integrity at one company turned a 2 month exercise into an 18 month
exercise.” Information Week May 19th 1997.

Almost every enterprise application is built on top of an entity model. Yet knowledge of how to build an
entity model to capture business rules and ensure data integrity is thinly distributed. This book is
immediately help to anybody working on an entity model.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 5

Your time is at a premium. Patterns save you time. You can apply many of the patterns immediately.
They help you

+ adopt modern analysis techniques that work with new technologies
* extend database development methods with object-oriented analysis
+ understand and address the limitations of object-oriented analysis and design methods.

It is clear that many, perhaps most, applications have been written with little or no methodology. But
most of our legacy systems only worked properly after a protracted process of iterative development,
they contain redundant code and they are difficult to maintain.

1.2 Academics

The beginning of wisdom for an analyst or designer is to realise that a one-dimensional methodology,
be it object-oriented or relational, is only part of what is needed.

This book describes the specification of business rules and constraints in a style that can be reconciled
with formal specification. In doing so, | hope to break the stranglehold that the ‘object model’ ‘and
relational theory’ and have over university teaching. Both theories make good servants and poor
masters.

We need a broader theory that encompasses process structure as well as data structure, and event-
orientation as well as object-orientation. This book also sheds light on various debates about object-
oriented software design. E.qg. it iluminates the difference between type-based and state-based
theories of what a class it.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 6

2. Preface

2.1 Entity models

Models are tools we use to analyse and define the requirements for software systems. A
comprehensive model defines both structural things/features and behavioral things/features. | discuss
the modeling of behavioral things/features in a companion volume, “The Event Modeler”, and only very
briefly in this one. This book focuses on modelling structural things/features in the form of an entity
model; see the What column in the table below.

Models are drawn at various levels of abstraction, from models of code in a specific programming
language, through specifications for such code, to specifications of an enterprise regardless of any
software that might be written. This book focuses on the specification of an enterprise application; see
the middle row in the table below. (This table is a kind of cut-down Zachman framework.)

Orientation | Structural model Behavioral Model
Level Entity model Event models State machine models
What How When
Enterprise model David Hay’s interest
Enterprise application This book “The Event Modeler” “The Event Modeler”
model
Technology model

David Hay (ref 99), who draws entity models for the purpose of enterprise modeling, has given me
permission to copy substantial chunks of my email dialogues with him.

In ordinary conversation, entity can mean an entity instance (an object) or an entity type (a class of
objects). Similarly, model can mean a live model (a running enterprise application models the real
world) or a dead model (a specification for a live model). | started writing this book with careful
attention to such distinctions. This pedantry made the text unreadable. | believe you will find it is easier
to interpret the words entity and model according to their context, as you do in conversation.

An entity model lies at the heart any enterprise application. An entity model shows a structure of
entities, attributes and relationships, annotated with business rules. Entity models are used by software
engineers working on enterprise applications to:

¢ refine a higher-level enterprise model for a specific project

o facilitate discussions with business people and clarify requirements

e specify the business rules and processing constraints for developers

e specify an object-oriented class structure from which business services are coded
e specify a database structure against which data services are coded

Trying to meet all of these goals in one model creates some tensions that are reviewed in this book.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 7

| am interested the challenge of helping the Agile Modeller. The Modeller traditionally takes the view
that specification and design up front are important. The Agilist tends to the view that design up front is
a waste of time, that models are a distraction from real work, that success depends mostly coding,
testing and verbal communication.

The Agile Modeller keeps an entity model simple, is aware of different modeling options, understands
trade offs between them, and introduces complexity only when and where it is needed. The Agile
Modeller knows a variety of approaches and embraces the philosophy of a well-know guru.

“It is important not to be dogmatic. Every approach has its advantages and limitations. You
must use a mixture of approaches in the real world and not mistake any one of them for truth”.
James Rumbaugh

Getting the entity model "right" is less straightforward than a course in object-oriented design or
relational data analysis might lead you to believe. Entity modelers face awkward questions to be
explored later. When should | include a class hierarchy in an entity model? When should | build
constraints into an entity model and/or database structure? Patterns and transformations shed light on
these questions.

2.2 Analysis patterns

Itis increasingly apparent that a software development process is not enough. There is more wisdom
to be taught through patterns and rules of thumb than through the stages and steps of a process

The analysis patterns in this book are similar to object-oriented design patterns in some ways, and
different in others. | will highlight a few points of correspondence, but the emphasis here is mostly on
analysis and design questions for enterprise applications.

For more years than | care to remember, | have taught analysts and designers to recognise patterns in
entity models (cf. class diagrams) and other kinds of model. As long ago as 1994, Grady Booch
pointed out the kinship between my ‘analysis patterns’ and Coplien’s work on ‘generative patterns’ for
object-oriented design. This prompted me to document my patterns more thoroughly. | ended up with
many more patterns than one book can accommodate, so | have to publish the entity model patterns
and event model patterns separately.

Patterns raise productivity. They speed up thinking and help you to avoid mistakes. They apply
equally to rapid and slow development, to engineering of new systems and reengineering of legacy
systems.

Patterns raise quality. They help you to elicit requirements. They prompt you to ask business analysis
questions and quality assurance questions. Look out for the bad patterns as well as the good ones.

Patterns connect things. They are recognisable structures or templates that capture expert
knowledge about connecting the components, classes and objects of a software system, via interfaces,
relationships and events.

Patterns make wider connections. They enable you to link apparently distinct analysis and design
techniques, coordinate different views of a system into one coherent specification, reconcile object-
oriented and relational ways of thinking.

Analysis patterns help you to get things right, discover the relevant requirements and design so as to
minimise redundancy. If one or two of the patterns and questions save you a few days effort, then this
book will have paid its way.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 8

3. PART ONE: BUSINESS RULES IN ENTITY
MODELS

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 9

4. Business rules in entity models

This chapter introduces some the basic ideas about business rules, because the use of entity models
to specify business rules is a theme that runs through many later chapters. It discusses the
specification of structural terms and facts; these appear as the names of entities, attributes and
relationships in an entity model. It also discusses the specification of structural constraints and
derivation rules which have to be coded into the enterprise application one way or another.

4.1 Structural terms

An entity model is built around entity types or classes. Model builders often start by naming entities,
then go on to name the structural features of those entities, that is their attributes and relationships.

4.1.1 Entities

How to begin? You may start by listing the terms used in the business, and consider creating an entity
class for each term. Some people say to list the nouns written down in requirements statements. But
this is rather trite as an analysis technique. More helpful techniques are suggested below.

4.1.1.1 Ask about process control requirements

Consider the system as a process control system and name the things the users want to monitor, if not
control. E.g. In an order processing system, the users want to stimulate their customers to place orders
and to pay for them, to control the creation and completion of orders, and to monitor the stock level of
each product type.

Business process modeling can help here, though the data analysis is more to do with considering
what it is in the real world that the business seeks to influence, rather than how this influence will be
exercised.

4.1.1.2 Look for business keys

Look for the things that the business already assigns keys to. Business people only give identifying
numbers and codes to things they care about and want to keep track of over time. The key of an entity
state record is not just a database concept; it is a necessary business concept.

“This point sometimes seems to be lost on object-oriented folks.” Michael Zimmer

A key enables users to:

e distinguish an object from another of the same class and
e map an entity state record onto a real-world object in the business environment.

So, you may reasonably start by looking for identifying numbers and codes that are important in the

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 10

business - customer numbers, product codes, order/invoice numbers and so on.

4.1.1.3 Specialise generalised abstractions

Analysts can prompt business people to think about their business by starting with some generalised
super classes and asking about the specialisations that the business people are interested in.

“Abstractions are useful in discussions with users. Abstractions force users to think more
broadly about their business, and can be an aid to reengineering the business.” Michael
Zimmer

David Hay tells me his enterprise models feature entity types that are general enough to be
recognizable by people in every business he models.

David’s entities aka

Party

Product Type or Item Type, or Asset Type
Product or Item or Asset

Activity Type or Procedure

Activity usually along with Work Order
Contract or Order or Agreement

Most people recognise broad generalisations such as those. So you can use these to uncover the
subtypes that are specific to the business domain you are working in. | like the alliteration of the P
words in my scheme below.

Graham’s “P” entities

David’s entities

David Hay’s comments

Party Party Party subtypes into Person and Organization.
Person A subtype of Party

Partnership Contract

Product Product Type And Product

Process and Event

Activity Type and Activity

| have to model these for some clients, but not
others.

Place / Point In Space

Real Spatial Element

I show subtypes of this in a later chapter.

Point In Time / Date

Never an entity in my models. But all my intersect
entity types have beginning and ending dates.

4.1.1.4 Trial and error

In practice, experts normally start by guessing a few major entities and naming them in boxes. They
then use their expertise to ask the right analysis questions - the questions that will help them to refine
their initial guess. | am interested in cataloguing the analysis questions that experts ask.

The entity modeler

Structural model patterns and transformations

Copyright Graham Berrisford

Version: 7
01 Jan 2005

Page 11

One of the messages of pattern-based modeling is: Don’t worry too much about getting the entities
right to begin with. Looking for patterns will help you to assure quality, and to correct whatever picture
you draw to start with.

“How does this relate to the sorts of patterns that others have published?” Michael Zimmer

| am talking about a different kind of pattern, useful for asking questions and making model
transformations. Wait and see.

4.1.2 Predicates

Predicates are characteristics that define what an entity is. Close on the heels of naming an entity, you
may extend the range of business terms by haming at least some of its predicates. E.g.

Predicates of the customer entity

Customer Number

Name

Country

Telephone Numbers

Predicates are an excellent, if rather data-oriented, way of looking at entities.

“Bob Schmid, in his book Entity modeling for Information Professionals has an original way of
describing entity modeling that | think is quite brilliant. Among other things, he discusses
"Predicates” early as characteristics of a Class.” David Hay

Predicates are structural features. Some object-oriented designers prefer to define an entity by its
behavioral features, its services or operations, but | don’t take that view until | get to discuss rules in
behavioural models later.

It is usual to divide the predicates of an entity between attributes and relationships. An attribute
becomes a relationship when the attribute is specified separately as an entity in its own right (e.g.
country).

Entity Predicates Attribute or Related entity
Relationship
Customer Customer Number Attribute
Name Attribute
Country Relationship Country
Telephone Numbers Relationship Telephone Number

The distinction between attributes and relationships is a subtle one. A question that helps to make the
distinction clear is the question of uniqueness. Do users care if two objects have the same value for a
given attribute? Can they change one value without changing the other?

Users don'’t care if two customers have the same name; they can change the spelling of one name

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 12

without changing the other. So, “name” is only an attribute, not a relationship to a uniquely identifiable

entity.

Users care rather more if two customers have the same country; they would not want to change the
spelling of a country name without changing it everywhere it appears. So, “country” is more than an
attribute, it is a relationship to a uniquely identifiable entity.

“What about the situation where for one class there are multiple values of an attribute? The old
first normal form issue.” David Hay

| treat first normal form as a policy rather than a rule. There are some cases where a repeating
attribute (e.g. telephone numbers above) is reasonably regarded as contained within an entity, rather
than turned into a child entity related to the parent entity. | will return to this in the paper “Aggregate

entities”.

“Terry Halpin’s ORM is clever in that it treats both entity types and data types as ‘objects’. An
attribute in relational-speak becomes a relationship to a data type. Among other things, this
means that you can relate an entity type to a data type, and if the datavalue type later turns into
an entity type, the changes required to the model are minimal.” David Hay

| have explore this pattern and transformation in later chapters, but | usually stick to a more
conventional view, closer what people expect a database schema to look like.

4.1.3 Typical attribute terms

Attribute word

Notes

Description text description

Memo narrative, large text blocks

Name well nigh an identifier, but no unigueness constraint
Short Name abbreviation

Number what people call numbers, may include characters
Locator map co-ordinates, postal address, email, phone number
Amount usually currency, could be a Balance

Value usually currency

Measure quantity, size, length (not currency)

Sequence

Date and time

Date

Time

Indicator short range of values: Boolean (true, false) and longer (yes, no, undecided)
Code medium range designator: countries, colours, tastes...

Identifier long range key: name, national insurance number

Image picture

Video moving image

The entity modeler
Version: 7
01 Jan 2005

Structural model patterns and transformations
Copyright Graham Berrisford
Page 13

Sound voice, audio

Document

Executable

4.2 Structural facts

Every attribute or relationship is not just a term; it is also a structural fact. It specifies a relationship
between one structural term (an attribute or relationship name) and another structural term (an entity
name). Each attribute and relationship is potentially an entity in its own right, and you can view the
name of an attribute or relationship as the name of a connection to this other potential entity.

Consider a system to record the pupils and teachers in schools run by local authorities. The boxes in
the figure below represent terms used in the business. The lines reflect facts of life - reasons why
terms are related in this business. Local Authorities employ Teachers; Pupils attend Schools, and so
on.

First rough attempt
at drawing a
structural model

Local ‘Term’

Authority

‘Fact’

Teacher School Head
Teacher

Experts draw boxes and
lines roughly and quickly,
then ask analy sis questions
to validate them

Pupll

You might initially represent the facts by connecting entities with wavy lines that don’t specify
constraints, but multiplicity constraints will press themselves upon your attention very quickly, and you
should capture them as soon as you can.

4.2.1 Discovering terms and facts
Though it may be declaimed as heresy by some object-oriented purists, a very good way to discover
entities, attributes and relationships is to use relational data analysis to divide relevant data structures

(especially legacy databases and required outputs) into normalised relations.

“Craig Larman, in his book on OO, has a half page discussing the idea of normalisation,
without once using the term as far as | can see.” Michael Zimmer

I'll say more about relational data analysis later.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 14

4.3 Structural constraints

Terms and facts are fundamental. They come first. But you can’t do much without the constraints; this
is where all the useful stuff is.

A constraint is a business rule that limits the way entities are born, change state or die, or limits the
values of attributes that are stored. A model with just six or seven entities and relationships might
require the specification of 300 constraints.

“l don't question that you have observed this, but | am surprised.” Michael Zimmer

A member of the Business Rules Working Group reported those numbers to me. Don’t forget that
constraints include the data type of every data item, and every other precondition for valid processing.

Some constraints can be captured as rules governing the multiplicity of attributes and relationships. On
discovering a fact that connects two terms you may immediately ask mathematical questions about the
constraints that govern an object at one end of the relationship:

Ask of each end of a relationship about its optionality - can the object exist without the
relationship? And its multiplicity - how many objects at the other end can the object at this end
be related to?

It is a pity that UML hides the optionality of a relationship inside the definition of multiplicity. So you
have to look the far end of the relationship (right across the page sometimes) to see whether it is
optional for that entity or not.

Remember technology-independence: the relationship lines in the model show facts about a business,
they do not necessarily define how pointers are stored in objects or database records; this is a lower
level of specification.

When drawing an entity model, you make no technology or implementation-level decision. You don’t
choose between different database management systems, decide which objects store pointers to other
objects, choose between pointer chains or indexes, or choose between object-oriented and procedural
programming languages.

Getting the semantic constraints on a relationship right is important. Relationships control how the
system behaves and performs. The relationships not only constrain the behavior of the system. They
also act as message passing or navigation routes between objects of different entities.

“This seems to be the fundamental difference between a class diagram and an entity
relationship diagram.” Michael Zimmer

I have to disagree with you. The relationships in an entity model show the possible navigation routes
between entities. These turn into message passing routes if you encapsulate the processing of each
entity in the form of object-oriented style classes.

“You weren’t forceful enough in your reply to Michael. An entity/relationship diagram is
technology independent. A relationship is structural. We don’t care what kind of database
structures or processes will be required to implement it.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 15

A relational database implements relationships with foreign keys. (This is why IDEF1X is
fundamentally a design technique.) Foreign keys are fundamentally structural. You “navigate”
them with joins.

An object-oriented designer implements relationships with program code. A “behavior” for a
class may include navigating an association to get information from another class. The
navigation may be both directions, or always in the same direction.” David Hay

I am not so anti-relational as that. For me, the foreign key is merely an alternative representation of a
relationship, and | see no harm in that. | find the presence of foreign keys in an entity-attribute
definition can help me to define some business rules in a concise way.

4.3.1 Primitive data types

Among the most basic constraints are primitive data types. Somebody, somewhere has to specify the
data type of every data item in an enterprise application. How to do this in a technology-independent
specification?

In the absence of an internationally-accepted standard, can we give analysts an instantly
understandable shared language? Ignoring mathematical and complex number formats, people tend
divide data items into five broad categories.

Data type Perhaps applicable to attributes of this kind
String Description, Memo, Name, Short Name, Alpha Number, Locator
Number Amount, Value, Measure, Sequence

Date and/or time

Label Indicator, Code, Identifier, anything defined with a uniqueness constraint:

Complex object Image, Video, Sound, Document, Executable

| don’t mention primitive data types in the examples that follow. But they are important. And before |
leave them, which level of model do we declare the primitive data types in?

Technology level? Yes. Primitive data types must appear at the technology level. Each
implementation technology provides its own range of data types, or requires that you define them.

Enterprise application level? They do belong in the enterprise application model. You certainly have
to define any user-defined data type (say country codes) and derivation rules. And you have to define
any non-trivial display formats on outputs (e.g. a date might appear in several formats). For each
model you build, you should have a list of the primitive data types. But in practice there are three
reasons to exclude primitive data types from a model at this level.

e First, there is no internationally agreed standard.

e Second, they will in any case have to be translated into different data types for the given
technology.

e Third, they are relatively trivial; you can surely trust intelligent educated developers to define
them, and they have to be involved in system analysis at least to this extent.

Enterprise level? If the enterprise level truly is a model of real-world objects, then it might be argued

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 16

that data types do not belong there. Data types apply to entity state records rather than to real-world
objects.

4.4 Structural derivation rules

A derivation rule derives data by some kind of calculation from other data. E.g.

Attribute of Invoice Derivation rule

InvoiceNumber = LastlnvoiceNumber + 1

AmountDue = AmountBanked + AmountRemaining
AmountBanked = AmountDue - AmountRemaining
AmountRemaining = AmountDue - AmountBanked

Which attributes are stored and which are derived? You can derive any one of the three ‘amount’
attributes from the other two. But you don’t need to specify the derivation rule against all three
attributes. Any one of them will do. By convention, specifying a derivation rule against one attribute
(say AmountRemaining) implies the other two are stored attributes, not derived.

The illustration above might be part of an entity model, or it might be part of a database model. These
different models need to be considered separately.

4.4.1 Storing derived data in a database

Some people insist that since derived data is redundant, it should never be stored in a database. But
refusing to store derived data has led many systems designers into a wasteful excess of redundant
processing. There is always a trade-off between update and enquiry efficiency.

In fact, financial institutions (banks, insurance companies and the like) do maintain a good deal of
derived data in their databases. Or do you think your bank calculates your account balance every time
that you request it, by working through all your transactions since you opened the account, adding all
the credits and subtracting all the debits?

So, database designers may decide to store the AmountRemaining, or not. Some technologies allow
them to specify this by declaring a derived data item to be ‘actual’ or ‘virtual’. This is one way that
behavioral processing operations have crept into the database paradigm.

“Sign me up as in favor of representing derived data on the diagram. It is essential in explaining
what'’s going on. | usually use typography (parentheses, or a leading /) to describe a derived
attribute, and the derivation logic itself, of course, has to be documented behind the scenes.
You correctly point out that to assert that an attribute is derived in the model says nothing
about how that derivation should be implemented. Way back in the early 80’s | used a
wonderful doms that had the concept of a derived field. This was the first time | had
encountered this idea and it was wonderful. It made coding whole chunks of the business logic
trivial. The only problem was, when we ran a query, the lights would dim. It turns out that in
many cases, derived data should be derived when the data are input, not when the query is
run. Oh, well.” David Hay

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 17

4.4.2 Separating specification from implementation

Derived data is important to users. Ideally, a business rules model will define all data that is important
to users, whether it appears in the form of information displayed on a user’s screen, or is used in
testing constraints on input events.

The analysts job is to define the universe of discourse of system purchasers and users. At least some
derived data and derivation rules are part of this universe of discourse, and naturally belong in a
business rules model. Analysts should be able to name a derived data item as an attribute, and specify
this attribute in the form a derivation rule, without deciding whether the attribute will be stored and
updated in a database, or derived when needed for an enquiry.

E.g. A Business Rules specification should include the AmountRemaining, but need not say whether it
will be stored as a data item, or derived when needed by calculation.

The figure below shows a fragment of an order processing system’s specification. It shows that four of
the attributes are derived by calculation from other attributes in the model.

Structural model

A Structural deriv ation rules
Customer
Custome Deb t s CustomermDebt sum of OderValues
CustomerCreditLimit where PaymentDate is null
Customemiscount
f;n- T otalUnpaidOrders = number of Orders

TotalUnpaidOrders
[

A

where PaymentDate is null

OrderValue = sum of ItemValues less

Order Product Customemiscount
OrderValue ProductName
PaymentDate ProductPrice

Order Item
ltemValu e oo e ItemValue = ltemQuantity * ProductPric
Ite mQuantity i

11

This diagram presents four calculations as structural derivation rules, defining them as properties of
attributes in the entities of the entity model.

In fact, the specification is incorrect. The four supposedly structural rules are not applied on the Order
Registration event, nor or on the Order Item Addition event that adds an Order Item to an Order. The
business would regard it as a mistake if the rules were applied at these times. The four derivation rules
in our example are only fired by an Order Closure event, and only guaranteed to be true just after that
event has been completely processed. So these derivation rules belong in a behavior model. See the
companion book <The event modeler>.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 18

4.5 Some questions and answers

4.5.1 Do we build our entity model for software engineers to use?

Yes. | don't really mind what conceptual models people draw during analysis, and/or for communication
with users. It is the hand over to design | worry about. | see too many analysts drawing models for
users that have to be completely rebuilt by the designers - and some analysts never realise that.

“I recognize this problem. It's a two-way street. Yes, we modelers should work with designers
to make sure that they understand the intentions and implications of the models. But the
designers could but more energy into understanding the models as well.

| rarely have problems [with users]. It seems to be the developers who have the most trouble
understanding the kind of abstraction that is a model.” David Hay

I am all in favour of discussing models with users. | am wholly against expecting users to validate a
model. They are not equipped and dontt attempt to understand an entity model in the way that
designers and developers do. Developers worry about the implications for design and code, and that
makes them (reasonably in my view) a tougher audience.

“Ah, but the point is that a conceptual model is not supposed to be concerned with whether it
can be implemented. It is supposed simply to describe the nature of what is.” David Hay

That’'s OK if you model an enterprise per se. | want my models to be used by software engineers
coding enterprise applications. For me, a conceptual model is supposed to be logical (technology
independent) but it is also supposed to capture specific requirements and, in the end, be codable as
the basis of a system that meets those requirements.

4.5.2 Do we define attributes, or hide them behind operations?

A few object-oriented purists do not define attributes, define only operations. They say ‘encapsulation’
means the attributes should be hidden behind the operations. This is plain silly for most enterprise
applications. Do define the attributes.

When you name a boring attribute like CustomerAddress and define it as freely updatable, this is a
short-hand way of saying that a CustomerAddress value can be retrieved by an enquiry operation from
a Customer object, and overwritten with a new value by an update operation on that object. Spelling
out such trivial operations in a specification would be tedious and unhelpful.

4.5.3 Do we store derived attributes as persistent data?

That is a physical design decision. When you name an attribute like AccountBalance and define its
derivation rule (say, AccountBalance = Credits - Debits) you are not saying whether AccountBalance
will be stored in a database or derived by an enquiry operation. Whether the business fact is
implemented in the form of data or process is a design decision.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 19

4.5.4 Can we build an entity model without a behavioral model?

You can, but it really is better to consider both data and processes in parallel. Even if you don’t care to
document behavior, an entity model does imply behavior. The attributes in the entity model represent
the state data (local variables) of long-running business processes.

“l understand this from your volume “The Event Modeler”, but it is probably not commonly
known.” Michael Zimmer

These long-running processes can be represented in the form of state machines. And the relationships
in the entity model declare which of these state machines are able to locate and talk to each other.

4.5.5 Do we build the entity model before the behavioral model?

Not necessarily. You might start with some behavioral analysis that identifies the use cases and the
events or transactions to be processed. You might even specify the behavioral operations of an entity
before its structural attributes. | have done this on process control system examples.

But for enterprise applications, defining the entity model first is natural. A typical enterprise application
maintains a large data structure, and most of the operations merely store or retrieve the values of
variables in that data structure.

4.5.6 Does an entity model imply a database?

Not necessarily. | have drawn entity models (using patterns in this book) for process control system
specification, where the state is merely a few variables stored in memory. But for enterprise
applications, the entity model does usually imply a database.

e A database becomes necessary where there are so many parallel-running state machines
you cannot hold all their state data in main store.

e And a database is practical where almost all state machines are 'asleep' almost all of the
time, so most of the data is inactive.

These two conditions pretty much define an enterprise application.

“I see this relates to other papers where you discuss the essential differences between
enterprise applications and the embedded systems often used as case studies in the object-
oriented world.” Michael Zimmer

4.5.7 Is an entity model exactly the same as a data model?

No. Sometimes the ‘right’ entity model corresponds to a relational database structure; other times it
differs. The entity model of a business services layer is not ‘merely’ a data model. It is the structure
against which behavior is specified, and operations are coded, just as any object-oriented designer
would expect.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 20

4.5.8 Does an entity model allow denormalization?

Yes, in two ways. An entity model allows division of one entity into smaller parallel aspect or role
entities.

“This would surely make relational purists have a fit.” Michael Zimmer

Probably. But this kind of denormalization can be useful where an entity has parallel state machines or
life histories. And it is essential where stored data is distributed, perhaps as a result of component-
based development.

And an entity model also allows aggregation of child entities with a parent entity into an aggregate
entity. However, this kind of denormalization is perhaps not as common as you might expect from
reading books on object-oriented design, for reasons explored in the later chapter called <Aggregate
entities>.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 21

5. From data model to entity model

An enterprise application is a software system that records the state of entities in the business. The
entities in an enterprise application tend to differ from entities in other kinds of application in two ways:

e there are thousands or millions of them, and
o they persist while the computer is switched off.

For these reasons, the state of enterprise application entities is usually stored in a database. And these
reasons do influence they way you draw entity models. | start here with a traditional database model.

Some object-oriented designers are uncomfortable with the database, look on it as “the crazy aunt in
the attic”. But it is fundamental and they neglect it at their peril. You can always reverse engineer an
entity model from a database schema. This chapter starts with a physical database structure and
explores ways to represent the business rules in the more conceptual model of classes and
relationships that | call an entity model.

Terms and facts appear in software specifications as the names of entities, attributes and
relationships. You can document terms and facts on their own, outside the context of a model in which
constraints and derivation rules are also documented.

“l would prepare a glossary of business language, even if some of the terms and facts were not
part of the model, just because the client will use them in discussions.” Michael Zimmer

But facts tend to disappear, because as soon as you start to draw an entity model, you merge facts
with constraints into the form of relationships. Constraints and derivations appear in software
specifications as invariant conditions and procedures attached to entities, attributes and relationships.

“Ah ha! As | generalize my models, | remove some business rules. While that sounds dramatic
it in fact is not.

As you have observed, three categories of business rules are terms, facts, and derivation
rules. Those stay very nicely in my models.

| have specifically excluded the constraints (except for multiplicity, of course). First of all,
these are entity models we are creating that describe what can be done. It is not appropriate
for them to also try to describe what may or may not be done. That is a different kind of model.
Ron Ross tried to lay constraints on top of entity models with his notation, which demonstrated
this point, even though it's a terrible notation.” David Hay

Here lie some differences between us. My concern is application-specific entity models rather than
generalized models. | want my entity models to specify as many business rules as they can bear. |
leave it up to the designers whether these rules are coded in programs or built into a database
structure. Second, | don’t believe you! You don’t remove every constraint. Every one-to-many
relationship constrains entities at the many end to be related to no more than one entity at the one end.

| believe it is true that the lack of a distinct behavioral model has forced Ron Ross into notation
overload. I'm not sure Terry Halpin's Object Role Modeling (ORM) escapes this criticism entirely.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 22

“Object Role Modeling does model many constraints very well. It is a completely different
approach to modeling, however, and | haven't had enough experience with it to know how to
relate my patterns to it. | don't mind leaving constraints out. These are the things that do
change a lot, so | am happy to model them as a separate exercise. | also look forward to the
day when there are tools that let us model them (and change the models) separately from the
database design effort.” David Hay

I am concerned to model constraints. | propose people should capture invariant constraints in the entity
model and capture transient constraints in the behavioral model.

You make the point that it is shaky linking business rules to data, since data change. That is
the basis for your argument that they should be linked to behavior. But if you follow my
philosophy, the data structures won't change. While rules may change, the kinds of things they
refer to won't.

Most businesses | enter are in an environment of total chaos. When | can show them the
relatively simple structures that underlie their business, it gives us all an opportunity to examine
what is truly unique about the organization and address it systematically. Every model | create
is unique, just for that client. It is only that every model starts with the same underlying
structure. By giving them an understanding of what is fundamental, | give them the ability to be
truly creative with what is unique.” David Hay

Again, and it is worth repeating to be sure all readers know what | am talking about. My concern is
application-specific entity models, where you have to define the business rules somehow. | am using
an entity model to specify constraints. | am happy to leave the database designer to decide whether
these constraints will be implemented in the database structure, or coded by programmers. One way or
another, constraints do have to be specified and implemented.

5.1 A data storage structure

There are various ways to specify constraints by annotations on a data storage structure. | can use a
case study to illustrate some ideas in an informal way. | will revisit the concepts and notations in more
detail in later chapters.

Figure 4a shows how tables are connected in a relational database structure. A common convention is
to underline the primary key for a table, that is, the unique identifier used to distinguish one row in the
table (one object of the class) from any other.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 23

Primary Key . esnsnssasasasbens

Identifying attribute(s) Affiliation
with a unique value in each Email
objectofthe class

Graphical representation | Person has written 0,1 or N PapHd
of theprincipal kind of o !
relationship understood
by a relational database
management sy stem

Paperwas written by 1 Author

Paper
. Paper Num
Forignkey . e Person Name
The primary key of one class PaperTitle

appearing in anotherclass - Paper Status
means there can only be one
Person for each Paper

Fig. 4a

Where the primary key appears in another table, it is called a foreign key. A foreign key imposes a
uniqueness constraint on a table; it says an entry in that table cannot be related to more than one
entry in another table (where the foreign key appears as a primary key).

You can think of a foreign key, or any attribute that is not a primary key, as a rolled-up relationship.
When you list attributes inside a table, you are saying that each attribute has a 1:1 relationship to the
table.

In small examples, you can list the keys and other attributes inside boxes on the diagram. This is
impractical where there are hundreds of tables. So most CASE tools provide a documentation scheme
to back up the model and help you retrieve the attributes behind a box when you want them.

5.1.1 Relational database tables

| have stolen a case study from Halpin [1995]. Figure 4b shows the tables in a relational database and
the relationships between them that are implied by foreign keys.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 24

SR 4 N\ ')
Tables ina Person Paper Room
relational Person Name Paper Num Building Num
database Affiliation PaperTitle Room Num
design Email Paper Status Area
Total Pages Room T ype
T otal Figures Total PCs
\T otal Table§ \Total Seats)
i i
i i
chair1 chair2 / resenved ' uses
M /{\/}\ for /{\ /{\
Committee Referee Author P resentation Slot
Committee Code Person Name Person Name Slot Number
Person Name [Chair 1] Paper Num Paper Num Stream
Person Name [Chair 2] Rating Presenter Hour
Budget Building Num
Room Num
\Paper Num)

It is reasonably clear that a single entry in one of these tables (one object of one of these entities) will
map onto a thing in the real world that users of the system will understand: a Person, a Paper, a

Referee and so on.

Similarly, the value for an attribute in a table will represent a fact about a thing in the real world: a

Person’s email number for example.

Some people view each database table as a business entity class, and each row or entry in a table as
the state of a business entity object. But a relational database design is not a full conceptual model.
There are many business rules missing from the structure of tables shown above.

5.2

5.2.1 Constraints on attribute values

Constraints in attribute specification

The Referee and Author tables both contain an attribute that has only a short, fixed range of values.
Figure 4c illustrates a convention that shows the range of values within {} brackets.

Author

Person Name

Paper Num

Presenter {Y,N}

Referee

Person Name

The entity modeler
Structural model patterns and transformations
Copyright Graham Berrisford

Page 25

Version: 7
01 Jan 2005

Paper Num

Rating {1...10}

Fig. 4c

Where the range of values for an attributes may include ‘null’ because the fact is missing or unknown,
some say the attribute is optional (rather than mandatory), some say it is partial (rather than total).
Figure 4d brackets the optional attributes in the Person and Referee tables.

Person

Person Name

Affiliation

0-- Email

Referee

Person Name

Paper Num

0-- Rating {1...10}

Fig. 4d

In practice, | am lazy about distinguishing mandatory and optional attributes; so you won'’t see the ‘0’
symbol where it would be appropriate in every one of our examples.

How to show in the Paper table that three statistical attributes (the total number of pages, figures and

tables) are only recorded for papers that are accepted? Figure 4e places an IF condition against the
optional list of attributes.

Paper

Paper Num

Paper Title

Paper Status {approved, undecided, accepted}

Selection Optional attribute group

o-- If paper selected Total pages

Total figures

Total tables

Fig. 4e
The table brackets the group to show that if one total exists, then they all exist.

522 Constraints between different attributes’ existence

Figure 4j introduces a three-way optional structure into the list of attributes in the Room table, and
employs an IF, IF, ELSE structure.

Paper

Building Num

Room Num

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 26

Area

Room type [lab, lec, office}

Selection Mutually exclusive attributes

0-- If Room type = lab Total PCs

0-- If Room type = lec Total seats

o-- Else

Fig. 4f

The table brackets the mutually exclusive options, reflecting the three subtypes recorded as values in
the Room Type attribute.

52.3 Attribute roles

The Committee table contains an attribute which appears twice playing different roles. Figure 4g shows
the two role names in square brackets. It also shows the second role is optional.

Committee

Committee Code {Orqg, Prog}

Person Name [Chair 1]

0-- Person Name [Chair 2]
0-- Budget
Fig. 49

Since the primary key has only two values (Organisation and Programme), there can be only two
entries in this table, two objects of this class.

52.4 Constraints between attribute values

How to show the rule that the same person cannot be both chair 1 and chair 2 of the same Committee?
Figure 4h specifies the constraint as a statement against the second of the two attributes.

Committee

Committee Code {Org, Prog}

Person Name [Chair 1]

0-- Person Name [Chair 2] Not = Person Name [Chair 1]
0-- Budget
Fig. 4h

5.3 Constraints in relationship specification

So far, all the relationships have been drawn as one-to-many. How to show that a Paper can have no
more than one Presentation Slot? Figure 4i shows this by taking the fork off the relationship line.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 27

&
Paper 4"5
Mis singfork means]

there cannot be more

Semi-optional
1:1 relationship

than one
Presentation Slot
related to a Paper

reserved
for

Presentatio
Slot

Fig. 4i

Figure 4j shows the same kind of semi-optional 1:1 relationship can be used to model the situation
where the optional component is a subclass (rather than an different kind of thing connected in an
aggregate).

‘Aggregate’ Two kinds of situation ‘Is a tree’
modelled by a semi-

optional 1:1 relationship
- Parent Superclass -

acquires | , Mmaybe a

belongs to
Child Subclass

Accepted
Paper

Presentatio

Slot

Fig. 4j

The difference between an aggregate of different things and a hierarchy of subclasses is not always
obvious. Later chapters explore the difference further.

The triangle symbols here are only for the human reader. The relational database designer might
implement these is-a relationships using ‘foreign keys’ in the normal way.

5.3.1 Introducing subclasses to impose constraints

The yes-no attribute in Author masks the fact that there are really three reasons why a Person may be
related to a Paper. Figure 4k shows these many-to-many relationships as distinct boxes.

The entity modeler
Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 28

Person Triple V Paper
shape

i

i

A AL AA

Constraints Referee not = Author Author = Presenter

Fig. 4k

A multiple V shape (one of the patterns in the volume ‘Patterns in entity modelling’) prompts us to ask
about constraints on the relationships between the child or link entities.

Figure 4l reshapes the model to show the constraint that a Presenter must be an Author, but an Author
may not be a Presenter.

""" SR

h
AN A

[Referee](Author j

/
N\
Introducing a subclass to
Presenter impose the constraint that
Presenter = Author
Fig. 4l

Figure 4m reshapes the model to show the constraint that a Presenter can only be related to a Paper
that has been accepted.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 29

1 i
/i\/{\ ?
Referee Author Accepted

Paper

)

AN
Subclassesshow the constraint

/1IN that Presenters are only

appointed for an Accepted Paper

Fig. 4m

Figure 4n reshapes the model to replace the two subclasses by an optional relationship from Author to
Paper.

W m \\\
i
/{\/}\ Also presenter of
Referee Author Replacement of subclasses
by optional relationship

Fig. 4n

Figure 4n implies the primary key of Paper, Paper Num, will appear twice in Author, playing two
different roles; the second role is optional since an author may not be selected to present their paper.

Author

Person Name

Paper Num [author]

Paper Num [presenter] Not = Paper Num [author]

Figure 40 shows the second Paper Num can be transformed into a yes-no attribute without loss of
meaning.

Author

Person Name

Paper Num

Presenter {Y,N}

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 30

Fig. 40

The yes-no attribute in the table | started with implied a second relationship from Author to Paper. The
relationship may be obscure, but it does belong in a full conceptual model.

5.3.2 Conditional relationships

How to show that a Room cannot be used to present a Paper if it is an Office? How to show that a
Paper cannot have any presenters until it has been accepted? Figure 4p shows both these constraints

by writing IF statements on relationship lines in the diagram.
J};{é
r

' Paper l ' Room I

IdeperStatus i 1fRoom Type
l = ac'cept i =laborlec
1
Presenter

/L A \ J\
' Author l Eresentation Sl})t
Fig. 4p

Rather than write IF statements in the boxes and on the relationships, you can introduce is a
relationships into the data structure, then attach attributes or relationships that are specific to the
subclasses to them rather than to superclasses where they are optional or mutually exclusive.

Figure 4q shows the is-a tree more graphically. So you can see more readily that only an Accepted
paper can have a Presentation Slot or Presenters selected for it, and only a Presentation room (not an
office) can be used for presentations.

Introducing
subclasses
business

constraints] !
chairl chair2
[}

/AN /N

Committee

Presentation
room

Accepted
Paper

Fig. 4q
I do not recommend you introduce subclasses like this to define constraints on optional data, | am only

The entity modeler

Structural model patterns and transformations
Copyright Graham Berrisford
Page 31

Version: 7
01 Jan 2005

showing it is possible.
Remember also, for the moment, the triangle symbols are only for the human reader. The relational
database designer might implement these is-a relationships using ‘foreign keys’ in the normal way.

Figure 4r shows how you might extend the original relational database structure to show enforce at
least some of the business rules.

[~ Database
structure with
subtables that
enforce some
constraints

Room
Building Num

Person
Person Name

Paper
Paper Num
PaperTitle

Affiliation
Email

Room Num
Area

chairl chair2 , VAN

7

Committee Presentation

. room
Committee Code o
Person Name [Chair 1] Building Num
Person Name [Chair 2] Room Num
Budget Room Type
Total PCs

Paper with
statistics

Paper Num

Total Pages
T otal Figures
Total Tables

Fig. 4r &

Figure 4r is not meant to be a definitive conceptual model for the case study. There is one more
transformation worth illustrating before | leave this example.

54 Turning attributes into relationships

Starting from an entity model where entities have lots of attributes but a few relationships, you can turn
all the attributes into parent entities.

You can relate each non-key attribute (other than primary keys) to a key-only parent of the original

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 32

entity. The key-only parent entity (otherwise known as an operational master entity, a collection entity,
or a categorising entity, or perhaps a domain entity) stores the valid or actual range of values for the
attribute.

Figure 4s shows the kind of diagram that might result from turning attributes into relationships. You
may compare it with the diagram on page 381 of Halpin’s book.

Fig. 4s

You need not show all non-key attributes as entities. However, you will want to raise the status of some
attributes in this way.

Why and when should you do this? Chapter 5 provides some analysis questions. Briefly, you should
consider whether the range of attribute values is controlled by users or by designers, and whether the
attribute has properties of its own.

Some teach that a logical model must be simpler than a physical one. So it is worth noting is that the
conceptual model above is a good deal more complex than the set of physical database tables |
started with.

So where does the complexity get coded if it is not in the database structure? Probably in processing
rules. You do need to understand how to capture business rules in process specification as well as in
database specification.

I will revisit some of the ideas illustrated by Halpin’s case study, and add many more.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 33

6. PART TWO: ENTITY MODEL PATTERNS AND
TRANSFORMATIONS

This part catalogues patterns in the relationships between entities. It reveals the rules of thumb
and business analysis questions triggered by pattern recognition. It continues from where Part

one finishes, starting on ground that is relatively firm and finishing with some more speculative

suggestions.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 34

/. Patterns in entity models

Using patterns and model transformations to get the constraints right.

This paper highlights the importance of the getting the constraints right. It introduces a catalogue of
standard structural shapes and the notion of entity model transformations. These ideas are developed
in later chapters.

7.1 Better design through pattern recognition

The success of a system depends on the relationships between entities being specified correctly. If
they are not, then it becomes:

e easier for useless data to get into the system
e harder for programmers to locate the information they need to find.

To prevent the above difficulties from occurring, to sharpen up the act of analysts, and to save time
and effort, you can apply some simple quality assurance techniques. One technique is enquiry access
path analysis. This means defining the route by which required information is extracted from the model.

Another is pattern analysis, which has the advantage that it can be applied with less detailed
knowledge of the required outputs. Fortunately, there are recognisable patterns and questions that
lead you to transform an intuitive or poor design into a well-engineered design. These patterns help
you to raise the quality of analysis and design work, and thereby improve the quality of the resulting
systems.

The figure below shows a pattern called the double-V shape.

Master Double Master
V shape

Ask of a double V shape: Can you tie an object of one detail entity to only one object of the
other detail entity? If yes, connect the two detail entities by a relationship, to capture the
constraint.

The basic pattern can be obscured by intermediate entities. The figure below includes a double-V
shape, even though the Holiday entity sits in the middle of one side of one of the two V shapes.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 35

Company Feature Client
Type

~ -
-~ .
-~
~ -
-

ZIN\ 1IN\
Holiday

Double-Vv
obscured by
intermediate

entity

Booking

Ask of this double V shape: Can you tie a Holiday Booking to only one Client Requirement?

Yes, a Holiday Booking is made to meet the Client Requirement for the Feature Type that classifies the
Holiday. So Holiday Booking is a detail of Client Requirement rather than Client.

Company Feature Client
Type

Business component
Structural model

VA AN\
Holiday
B ooking

There is a quality benefit. It is now impossible for users to create a Holiday Booking for a Client who
has not expressed an interest in the Feature Type of the Holiday.

There is a productivity benefit. Programmers do not have to navigate around the model to find the
relevant Client Requirement for a Holiday Booking, or sort Holiday Bookings by Client Requirement
within Client.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 36

“l wonder if normalisation could or should lead to this result? It seems somehow similar to the
transitive dependency issue, but only at an intuitive level.” Michael Zimmer

Perhaps, but you cannot rely on any one technique to reveal everything. See the Chapters on <Model
transformations> for further examples.

7.2 Entity model transformations

Patterns occur in various kinds of specification, but among the simplest and most widely useful are
those that involve the specification of relationships between entities. The figure below is an attempt to
summarise and name the entity model shapes that | am most interested in. The arrows show some of
the possible transformations.

The entity modeler
Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 37

Shapes, and some possible transformations

Parent - V shape Level
Child —+— i

Triangle Hierarch Loop Diamogd \[

v

Double —
Relation Tramlines V shape Yshég

X shape Double
W shape Y shape

=
W

y

Trip leY
WV shape shape

Our pattern names include: parent-child, V, level, bridge, relation, diamond, triangle, double-V and Y
shapes, double and triple Y shapes, tramlines, X shapes and recursive shapes. The Chapters on
<Model transformations> shows the transformations in the first row apply to both data models and
process models. Other Chapters (not yet collected into a volume) detail the shapes and
transformations indicated by arrows on the diagram above.

7.3 Atool for raising quality and productivity

Many people teach the mechanics of how to document system specifications. Plenty of CASE tools
help you with these mechanics; they ensure you get the syntax right; they constrain you to use the

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 38

proper boxes, symbols and lines. But there are no tools that help you with the semantics - the difficult
part - the thinking - the analysis

The skill of professional analysts lies in recognising patterns in specifications, especially in object and
event models. They use standard shapes constructively to build up a large and complex picture. They
also use them destructively, to analyse an existing specification, to take it to pieces and question
whether a better construction should be put upon these pieces.

The patterns catalogue above is a chart of simple shapes with memorable names. | have listed the
questions you should ask about each shape, and the possible transformations that you might need to
apply. So | can now teach students:

e the name, meaning and use of a pattern in constructing a specification
¢ the analysis questions which discovery of the pattern prompts
¢ the design or redesign work that is necessary depending on the answers.

This new approach means that for the first time | can envisage a CASE tool that helps us with the
thinking part of analysis and specification. It will help us to build better quality systems, not just better
documented systems.

7.4 Automating pattern recognition

A pattern on its own isn’t much help. What to do with the pattern that has been recognised? This is the
expert knowledge | want to capture. A tool can highlight or report on patterns, and prompt its user to
answer specific quality assurance questions.

If a CASE tool is to ask us questions about patterns, it must first have the appropriate pattern
recognition functions. To recognise the named patterns, the entity at one end of each relationship must
be declared as the ‘parent’, and the other must be the ‘child’. E.g. given a one-to-many relationship |
always nominate the ‘one’ end to be the parent. It is the parent-child hierarchy inherent in each
relationship that makes the shapes recognisable, whether by a person or by a tool.

For people, always drawing the parent above the child imposes a hierarchical structure that helps us to
display the known patterns in an easily recognisable form, corresponding to the shapes in the analysis
patterns catalogue.

“My preference is to draw the model this way up. Dave Hay prefers the ‘dead crow’ notation -
really a matter of taste.” Michael Zimmer

Of course, patterns are careless of the diagram symbols or the presentation form. As long as each
relationship has parent and child ends, a CASE tool can detect a pattern if the model is drawn upside-
down, or using different symbols, or written down in the form of text or code.

Mike Burrows has developed a CASE tool called Validator (see <www.asplake.demon.co.uk) that
detects and reports on most of the structural patterns | have catalogued. It asks you analysis
questions, and suggests some transformations that may improve your model. See the Chapters on
<Model transformations> for further details.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 39

8. Nine simple model transformations

| earlier applied various transformations to a relational database design from Halpin. Some of
the same transformations appear in a classification developed by Petia Wohed (neé
Assenova) and Paul Johannesson at Stockholm University.

Petia and Paul set out with the intention of making schemas more graphical, to make the rules
fully explicit for the purpose of schema integration. Schema integration is a different job from
schema design, so | will add comments and guidance from the view point of somebody who
designs schemas for enterprise applications.

Also, their modelling language is different from ours. Notable differences are listed below:

Their term Our term

attribute attribute or relationship (see below)

single-value attribute attribute or 1:1 relationship

multi-value attribute parent-child relationship (from one master object to many child objects)
partial or total optional or mandatory

total in union at least one must exist

surjective attribute parent-child relationship with at least one child

8.1 From optional attribute group to subclass
Given an entity with an optional group of attributes, you may move the optional attribute group
into a subclass where it is mandatory.

Petia and Paul discuss thus under ‘transforming partial attributes’. Figure 5a illustrates their
example.

Person Person
Person Name Person Name

Employee Typg
Salary

Employee
Employee Type
Salary

Fig. 5a

Figure 5b shows an example from chapter 4. The entity Paper has attributes that only apply to
papers accepted for presentation. So you may move the optional attributes (Total Pages, Total

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 40

Figures, Total Tables) into a subclass where they are all mandatory.

Paper Paper
PaperTitle PaperTitle

Total Pages

T otal Figures
Total Tables

Acce pted

Transformation of optional paper

attribute group into subclass Total Pages
T otal Figures
Total Tables

Fig. 5b

Chapter 6 suggests that people normally do the reverse in practical system design. They roll
up optional data groups into an aggregate entity, partly to reduce the length and complexity of
access paths by events and enquiries, and partly for other reasons explored in Later chapters.

8.2 From optional relationship to mandatory relationship

Given a parent-child relationship that is optional from the master’s view point, you can make it
mandatory by replacing the child by a subclass of itself.

P&P call this ‘transforming non-surjective attributes’. An attribute is ‘surjective’ when each
instance of its range (the master entity) is associated with at least one instance of its domain
(the child entity). So a surjective attribute is an attribute whose inverse is a mandatory
relationship.

Figure 5c illustrates their example.

9. 5c : A

After the transformation, each object of the parent entity is associated with at least one object
of the child entity. In this example, the relationship starts optional at both ends and becomes
mandatory at both ends.

Again, people often do the reverse in practical system design. If a superclass has only one
subclass, they would roll the data of the subclass up into the superclass, partly to reduce the

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 41

length and complexity of access paths by events and enquiries, and partly for other reasons
explored in Later chapters.

8.3 From optional attributes where at least one must exist
Given optional attributes that are mutually exclusive, so at least one must exist, you can
introduce a generalised attribute, a superclass of the mutually exclusive attributes.

P&P call this ‘transforming partial attributes which are total in union’. Figure 5d illustrates their
example.

Employee E mployee
Person Name
Salary
Wages
Payment Class
hierarchy
with disj oint
A subclasses

| |
[Sal ary] [Wages]
Fig. 5d

Figure 5e shows a different convention in database design - to turn the mutually exclusive
attributes into mutually exclusive relationships.

Aggregate
School School with disj oint
School Name - . components
Head Teacher M
Head Principal
T eacher Governor
Fig. 5e

Later chapters explores the difference between a ‘class hierarchy’ as in figure 5d and an
‘aggregate’ as in figure 5e.

Principal Governor

8.4 From optional relationships where at least one must exist

Given several parent-child relationships that are optional from the parent’s view point, but

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 42

where at least one must exist, you can make them mandatory by introducing a superclass of
the various children.

P&P call this ‘transforming non-surjective attributes which are total in union’. Figure 5f
illustrates their example, where a Head Teacher is obliged to take responsibility for at least one

course.
e - @
Head Head &4
T eac her Teacher
' Adult
Pupil Education Course
Course Course
| |
_ Adult
Pupil Education
Course Course
Fig. 5f

This transformation is unusual in practical enterprise application development. The
requirement that a parent must have at least one child drawn from different types is not very
common.

Designers are likely to apply the reverse transformation, that is, relax an ‘at least one’
constraint after it has been defined, because where a business monitors hundreds or
thousands of objects, it is normally easy come up with counter examples, valid exceptions to
the rule.

8.5 From N:N relationship to link entity

P&P call this ‘transforming m-m attributes’. Figure 5g illustrates their example.

l Company I ' Employee I
N 1IN\
Compan /] Employee
‘

Fig. 59

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 43

This transformation is very common in practical enterprise application development. So
common that it is second nature to database system developers, not just because it is required
for implementation reasons, but because resolving many-to-many relationships is a valuable
step in analysis. See chapter 5 for further discussion.

8.6 From attribute to parent entity

Given an entity with non-key attributes, you can raise any attribute other than the primary key
to become a parent entity connected by a 1:N relationship.

P&P call this ‘transforming lexical attributes’. Figure 5h illustrates their example.

Inv ersion of attribute into] If Cities without
keyonlyparentclass City Companies are
excluded, then this

om0 relationship would b
_____ mandatory and City
""""" would be a derivablf

Company

Company Name ;
ot located in sotting class’

Fig. 5h

This is very common in practical enterprise application development. But why and when to do
this?

‘the schema is more stable, since it is easier to add extra attributes for cities. Some of the
queries after the transformation become more complex, because the derivations cover a larger
network of objects.” P&P

Let us focus on a tiny part of the model at the end of chapter 4. Figure 5i shows the non-key
attributes of the Room entity raised to become key-only parent entities.

—— -

Attributes Constrained Constrained Derivable
raised to
become -
R T Build A
parent [oom ypej (uilding j (rea]
classes
classifies describes

contains
1

iso measures
This shape indicates the child

class is a 'relation’, a
conmpound or aggregate of
several facts about a thing

Fig. 5i

The best kind of analysis pattern prompts ‘Ask of this pattern...” questions.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 44

Ask of a non-key attribute: Is the range of values constrained? If yes, define the attribute as a
parent entity.

E.g. Room Type is constrained (lab,lec,office) and Building is constrained (1...5). You can
prevent mistaken classification of a Room under an invalid entity by defining these values as
objects of a parent entity.

If no, nobody wants to control the range of values, then don’t make it a parent entity. E.g. Say
nobody cares too much about what is recorded as a Area. The Area entities are derivable from
whatever values happen to be recorded.

Ask of a non-key attribute: Do users control the range of values? If yes, define the parent entity
in the Business services layer.

E.g. Users might want to control the range of Room Types (lab,lec,office).

If no, or you want to stop users from change the system’s rules by adding or deleting objects of
the class, then define the parent entity in a layer of the design controlled by designers. E.g.
you might define Building as a class in the Ul layer or a table in the data storage structure.

Ask of a key-only parent entity: Does it have non-key attributes of its own? If yes, make it an
entity like any other in the Business services layer.

E.g. you might record the total number of Rooms as an attribute of the Room Type entity. Even
a derivable total like this turns the key-only parent entity into an entity like any other.

If no, then you may later treat the key-only parent entity differently from other entities in the
data storage structure, perhaps define it as an index rather than a table.

Ask of any remaining non-key attributes: Do users regularly make enquiries that select or
classify objects by a single value of the attribute? You may signify any further requirement for
classification by drawing an entry-point arrow on the entity, showing which attribute is used for
selection. Again, the attribute may become some kind of index in the data storage structure,
rather than a table.

8.7 From fixed range attribute to class hierarchy

Given an entity with an attribute that has a small fixed range of values, you may transform the
fixed range into distinct sub entities.

P&P call this ‘transforming attributes with fixed ranges’. Figure 5j illustrates their example.

E mployee
Salary
Employee Type {A,T,R

E mployee

g

Edministratoﬂ (Teac her j (Researcheﬂ

Fig. 5j

The entity modeler

Structural model patterns and transformations Version: 7
Copyright Graham Berrisford 01 Jan 2005

Page 45

‘It is easy to see the subclasses in the graphical notation. In contrast, it is more difficult to read
and understand the definition of the lexical type Employee Type, which is not included in the
graphical notation of the schema.” P&P

Given the attribute Room Type (lab, lecture room, office) in the case study in chapter 3, you
may transform the fixed range into distinct subclasses.

-
Room
Building
Room Number
Area
Room Type
Total PCs

_Total Seats

~N

Room
Building
Room Number
Area

Room Type

A

aboratory
otal PCs

Lecture
Room
Total Seats

Office

Fig. 5k

This transformation is rare in practical enterprise application development, for reasons

explored in Later chapters.

8.8 From class hierarchy to network

Given a class hierarchy in which subclasses share properties in an orthogonal dimension, you

can create a class network.

P&P call this ‘transforming to lattice structures’. Figure 5l illustrates their example.

The entity modeler

Structural model patterns and transformations

Copyright Graham Berrisford

Page 46

Version: 7
01 Jan 2005

Hierarchy = Network
Employee
Does the mutual
exclusion rule apply in

l every case? If no...

| |
T eac her
dministratolr | Teacher esearcher

A

I | |
Edmi nistratﬂr [T eac her] Eesearcher]

' i
A A

‘It is easier to see that Scholar is specialisation of both Teacher and Researcher if they are
drawn as boxes, compared to searching for and reading a rule that has the same meaning.’
P&P

Fig. 5l

Later chapters explores this transformation in more child, but a little of the discussion is
repeated below.

Figure 5m shows that a data structure in which Class Teacher and Head Teacher inherit from
Teacher might be extended to include a subclass that inherits from both Class Teacher and

Head Teacher.

A

[>_.

AN
Head Class Head Class
T eac her T eac her T eac her T eac her
PANVAN
Class Does the mutual Is-a
hierarchy exclusion rule network
applyin every Dual Role

Teacher

case? Ifno... *

Fig. 5m
Figure 5m shows a diamond-shaped is-a tree in which a Dual Role Teacher entity has been

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 47

introduced to accommodate the few Teachers that are both Head Teacher and Class Teacher

e A Dual Role Teacher is a Head Teacher is a Teacher.

e A Dual Role Teacher is a Class Teacher is a Teacher.
Defining a diamond-shaped is-a tree may be a recognised practice in object-oriented
languages that support multiple inheritance, but one should be aware that the meaning of the
model is ambiguous, in the way described below.

The model does not specify the rule that a Dual Role Teacher is a single Teacher. It might
equally well be read to imply that two Teacher objects are needed instantiate one Dual Role
Teacher object.

One way or another, an object-oriented programming environment that allows multiple
inheritance must work out that Dual Role Teacher inherits only once from Teacher. But the
semantics of the diagram notation don't tell you this, and we want the conceptual model to act
as a specification for relational database programmers as well as object-oriented
programmers.

Diamond shaped structures are discussed further in Part Two.

8.9 Generalisation of similar attributes

Where an entity has a list of similar attributes, you can generalise these attributes into a
relationship. P&P call this ‘transforming non-unary attributes’. Figure 5n illustrates their
example.

Generalisation

of similar
irogiucttN attributes Product
roduct Name|
Jan Sales ~—
Feb Sales f:
Dec Sales Monthly
Sales
) R

| |
Jan Feb . oo Dec
Sales Sales Sales
Fig. 5n

Once again, this transformation is not very common in practical system design. Figure 50
shows two more common transformations discussed in Later chapters.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 48

[] ()
Product Month
/NN
Monthly
Sales

Tramlines’

After
De Carteret

Product

After
Halpin

Fig. 50

8.10 Different views of conceptual modelling

Schema integration v. schema design
Petia has commented as follows.

‘All of our transformations increase the size of the schema (the diagram that is). Some don’t
like this. But it is the price you pay for a clear and explicit model of rules and constraints.

‘People can specify constraints as rules attached to the attributes, hidden away in a data
dictionary behind the model. But then it is harder to see concepts which may be important.

‘The idea of conceptual modelling is to model the universe of discourse, capture its important
aspects, in a graphical picture. So, our nine transformations make the presentation more
explicit, more visible. The aim is to specify rules and constraints as relationship lines in a
graphical model.’

Petia and Paul are interested in these transformations for the purpose of schema integration.
Making things visible makes the process of schema integration easier. If you plan to merge two
schemas, you do need to make all the current rules fully explicit.

But note that schema integration is a one-off exercise. You can be confident that the range of a
type, the instances of a class, the rules of the business, will not change while you are working.

Building a conceptual entity model for long term use is a different matter. The model has to
hold object data for years. It has to survive while objects are created, amended and destroyed,
while the ranges of apparently fixed values are altered, while the rules evolve.

This gives the modeller a different perspective. The modeller will try to avoid fixing temporary
rules (like a range of subclasses) into the data structure. | tend to avoid creating class
hierarchies for this and the other reasons explored in Later chapters.

8.10.1 Different conventions

The important thing is to record the semantics of the problem domain, one way of another.
Different diagram drawing conventions lead you to draw different-looking conceptual models.

Some people like to represent every term and every fact in a box of its own. You might specify

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 49

each fact about an object by drawing a rectangle. You might place a rectangle on each and
every line between one named term and another named term. Figure 5p shows the kind of
diagram that results from this.

Facts drawn as link classes thatrelate Terms together

Institution Person Telephone
Terms number

N AN

T elephone
Affiliation Email humber of Persojn

Facts

Fig. 5p
There is no law saying you have to represent every attribute or relationship in a rectangle.
Doing this usually creates a diagram that is far too large for practical use.

When you are building an enterprise application with perhaps 2,000 data items; you cannot
handle a picture that shows every data item in a box (let alone every value of every data item
as some of the transformations in this chapter lead to).

It is more convenient to roll one entity up to become an attribute of the other. You may do this
where there is a 1:1 relationship, or where one entity is a key-only entity, with no attributes of
its own.

Figure 5q features both 1:1 relationships and a key-only entity. It can be condensed by rolling
the ‘key-only entity’ into the ‘state entity’.

State Class Person Telephone Key-only
Number class

Telephone
humber of Persoln

Attribute formed by
rollingup a 1:1 V shape

Fig. 59

8.10.2 The importance of business perspective

Figures 5qg and 5r shows that whether a business term becomes an entity or an attribute
depends on the perspective of the system’s users.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 50

Key-only
class

Perspective ofa
telephone company

Person

T elephone
humber of Persojn

Telephone

Number

State Class

Fig. 5r

Colour might seem indisputably to be an attribute. But Colour might be easily be an important
business entity in a company that manufactures paint.

By the way, figure 5s shows the term ‘state entity’ comes from one way to classify different
kinds of entity in an entity relationship model.

Constraint object

Value that constrains
business data

Universal value object

Defined outside the business (colour, month)

State object

created and destroyed by the business (customer, application)

Derived object

derived from values stored in other objects, not a constraint on

them
(month of birth)

Business object

Value that currently
applies to objects in
the business

Fig. 5s

The entity modeler

Structural model patterns and transformations
Copyright Graham Berrisford

Page 51

Version: 7
01 Jan 2005

9. Patterns in simple relationships

How relationships prompt the analyst to ask questions.

6.1 Relationship notation

All the commonly used notations show entities as boxes and relationships as lines between
them. | use a diagram notation based on that developed (I think) by Charles Bachman in the
1960s, from which a number of other variants have been derived. It doesn’t matter if you prefer
another notation (say, after Chen, or OMT) that expresses the same semantics.

To show the dependence of one object on another, or its independence of other objects, our
notation uses a continuous line or a broken line:

symbol shows that an object at that end of the relationship
broken line can exist without the relationship

continuous line cannot exist without the relationship

Fig. 6a

Fig. 6b

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 52

9.1 Parallel and optional aspects

A solid continuous line is a mandatory 1:1 relationship. The objects at either end share the
same identity, even though they might be given different keys by a business.

Mandatory 1:1 relationship
Are the two objects created and

destroyed at the same time?
School Head
Teacher Can an object of one class exist

without an object of the other class?

Parallel aspects

Fig. 6¢

Later chapters shows you may draw a mandatory 1:1 relationship to connect the parallel
aspects of an aggregate. But as a rule of thumb, you should assume that nature abhors a
symmetrical or non-hierarchical relationship.

Ask of a mandatory 1:1 relationship: Are the two objects created and destroyed at the same
time? If yes, then the two objects share the same identity. They are what | call an aggregate.
For questions about aggregates, see Later chapters.

Ask of a mandatory 1:1 relationship: Can an object of one entity exist without an object of the
other entity?

In this case, you may discover that a School can exist without a Head Teacher, but not vice-
versa.

Semi-optional
1:1 relationship School

Hierarc hy:
| independent class
shown above
dependentclass

Head

Optional aspect
P P T eacher

Fig. 6d
In a semi-optional 1:1 relationship, the independent entity is called the parent entity of the
relationship. The dependent entity is called the child entity of the relationship.

The parent-child nature of relationships helps us to draw an entity model in a structured way,
with parents towards the top and children towards the bottom.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 53

Level

O i

—
parent -child

Fig. 6e

This hierarchical structuring gives us opportunities for naming standard shapes, recognising

them in specification diagrams, using them to ask questions, and teaching the analysis and

design implications.

9.2 Aggregates and is-a trees

Ask of a semi-optional 1:1 relationship: Might there be more child objects than parent objects?
If no, the model is incorrect, since the population of objects contradicts the cardinality specified

by the relationship.

Ask of a semi-optional 1:1 relationship: Does it describe an aggregate or a class hierarchy?

Figure 6f shows you can test the meaning by trying to write either ‘belongs to’ or ‘is a’ on the
child or subclass end of the relationship, and ‘may have’ or may be’ at the top.

Aggregates

[smm] [paper]

may | have
!

belon gsl to

may i have
]

belon gsl to

Head
Teacher

Presentati
Slot

)

Is-a trees
[Animal j [Rectangle]
may E be may E be
is| a is|a

[Dog] [Square]

Fig. 6f

What | want is a graphical notation that combines the cardinality rules specified by a database
structure notation, with the semantics specified by object-oriented notation. Figure 6g shows a

notation you can use to express the different semantics, while retaining the cardinality

information.

The entity modeler

Structural model patterns and transformations

Copyright Graham Berrisford

Page 54

Version: 7
01 Jan 2005

Aggregates

GEAEE

Head Presentatio
Teacher Slot

Is-a rees

[Animal] [Rectangle]

2 4

Dog Square

Fig. 69

Figure 6h shows a deep is-a tree.

Deepi s-a tree
Polygon

i

Quadrilateral

=

Rectangle

Square

T

An object of the subclasis a
object of thesuperclass.It has all
the properties of the superclass.

The subclass may have some
additional properties, orrefine
thos e of the superclass.

Fig. 6h

Figure 6i shows notations you can use to show aggregates and is-a trees with several
overlapping children or subclasses. The fact that the lines are dotted at the top means the

children or subclasses may not apply.

The entity modeler
Structural model patterns and transformations
Copyright Graham Berrisford

Page 55

Version: 7
01 Jan 2005

Aggregate Overlapping or Is-a tree

orthogonal
children P arallelogram
4 4

Head Principal Rectangle Rhombus
Teac her Governor
Fig. 6i

Figure 6] shows notations you can use to show that the children or subclasses of an aggregate
or class hierarchy are mutually exclusive.

Aggregate Disjointor Class hierarchy
mutually exclusive

.

Fig. 6j

Both these diagrams say ‘either one case or the other case’. If you wanted to allow ‘neither
case’ as well, then you would draw the top half of the relationships with a dotted line

In this short section | have entered the territory of object-oriented modelling; see later chapters
for much more discussion of aggregates and is-a relationships.

9.3 Optional aspects and states

Ask of a semi-optional 1:1 relationship: Can a parent object be related to many child objects
over time? And do we want to record past children? If so, then the relationship becomes 1:N,
as shown later. You should add historical entities and relationships to the model wherever they
are needed in order to support users’ requirements for information.

It is usually easiest to start by drawing the entity model without history. The model above will
record for a School only the currently employed Head Teacher; it won’t keep a history of past
Head Teachers. Let us say we are not interested in this history.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 56

Ask of a semi-optional 1:1 relationship: Is the child object a singular optional attribute of the
parent object? If yes, you might make the optional attribute mandatory and roll it up. (See the
guestions about aggregates in Later chapters.)

However, if the child object is a group of attributes in 1:1 correspondence (so if one is present
then all are) then the semi-optional 1:1 relationship saves you from specifying the rule of 1:1
correspondence between attributes of the group within a larger entity.

Ask of a semi-optional 1:1 relationship: Is the child object merely a later stage in the life of the
parent object? If so, then you normally roll up the child entity into the parent entity, with the
same benefit/cost tradeoff as above.

Semi-optional _
1:1 relationship Pupil
’
i
Seni Is the child object merely a
Optional aspect Penllolr later stage in the life of the
up! parent object?

Fig. 6k

An object in this kind of model becomes divided between entities as it progresses through its
life. Somebody who starts as a Pupil may later become a Senior Pupil as well. This is an
unnecessary elaboration, leading to some redundant design and coding effort. Where the child
entity represents merely a later stage in the life of the parent entity, you may roll the two
entities into one.

The convention | favour is that objects don’t normally change class.

Some people propose the reverse, that you should create a subclass for each state an object
may pass through, showing them as mutually exclusive subclasses in a class hierarchy. But
this adds to the design and coding effort. It increases the number of entities in the design and
the complexity of coordinating separate objects during an enquiry or update process. If each
entity becomes a database table, it slows down performance, since more objects must be
retrieved and stored.

Later chapters say a great deal more about types and states.

9.4 Loose associations

Returning to the first example and first question, you should ask about the objects at both ends
of the relationship: Can they exist without it? If yes, you should define the relationship as being
optional at one or both ends.

In this case, you may discover that the system has to record both headless Schools and
unemployed Head Teachers.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 57

Wholly optional relationship

Does the relationship hide data
School - Head that describes the reason for a
T eac her cross-reference between

objects of the two classes?

Loose
association

Fig. 6l

Again, nature abhors a symmetrical or non-hierarchical relationship. There are two ways to
introduce a third entity into the picture

e

&\ Bridge

Fig. 6m

9.4.1 Constructive pattern: 1:1 V shape

Ask of a wholly optional 1:1 relationship: Does the relationship hide data describing the reason
why the objects are linked? If yes, you should create a link entity.

E.g. you may discover that a School and a Head Teacher only become linked via a Contract.
You can redraw the entity model in a hierarchical V-shaped structure.

Head

1:1V shape

Contract with| 1:1
Head Teachdr link class

Fig. 6n

The link entity at the bottom of a V shape acts to constrain the relationship between the two
higher entities. It gives the relationship a meaning. It restricts the possible links between
objects of the two higher entities; you can only connect objects which are in reality connected
by this meaningful relationship.

Remember: the identifier or key of an entity state record is not just a database concept, it is a
necessary business concept. It enables you to:

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 58

a) distinguish that object from another of the same class and
b) map the entity state record onto a real-world object in the business environment.
Later chapters includes analysis questions that are relevant to a 1:1 link entity.

9.4.2 Constructive pattern: 1:1 Bridge

The 1:1 bridge shape gives two child entities a common parent. Use it where entities are
additive roles rather than mutually exclusive subclasses.

For example, suppose that you wish to combine two legacy systems, one from Europe and
one from the US, that maintain information about an overlapping range of stock types. The two
systems identify their range of stocks by different numbering systems. Some European stock
types are the same as those in the US, some exist in only one of the two regions.

Wholly optional relationship

European
Stock Type

Loose
association

Is there an aggregate of which
the two subclasses are partial
realisations?

Fig. 60

Ask of a wholly optional 1:1 relationship: Is there an aggregate of which the two entities are
partial realisations?

In this case you might create an entity that sits over and between the two systems.

_y
[European
Stock Type

USA
Stock Type /
/Yy
Fig. 6p

The entity model above says ‘either, both or neither’. It says you can instantiate a superobject
that has no related subobject. Specifying an ‘either or both’ constraint to exclude ‘neither’ is
beyond us here.

9.4.3 Aggregates

Both the 1:1 V shape and the 1:1 bridge shape are aggregates, and they prompt analysis
questions. Aggregates and semi-optional relationships often transform in one of the ways
described in Later chapters

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 59

9.4.4 Comparable object-oriented design pattern: Adapter

The Bridge shape is akin to one of Gamma et al. patterns called Adapter that is designed to
‘convert the interface of a class into another interface clients expect. Adapter lets classes work
together that couldn’t otherwise because of incompatible interfaces.’

9.5 1:Nrelationships

A typical object-oriented system records only the current state of transient objects. A typical
enterprise application records historical data about long-lived real-world objects. Both the real-
world objects and the entity state records are persistent. History and persistence make for 1:N
relationships.

Ask of any kind of 1:1 relationship: Can an object of one entity relate to more than one object of
the other entity over time? And do we want to record past children? If yes, you should show the
manyness of one or both ends of the relationship.

The result of asking this question is that the majority of associative relationships in enterprise
applications turn out to be 1:N, shown in our notation using a fork:

symbol shows that at that end of the relationship
fork on line there may be several objects
no fork on line there may be no more than one object.

Combining the continuous or broken line with the fork, the notation can show four kinds of 1:N
relationship, as illustrated below.

Using a fork to show manyness

A J\ A A

In a 1:N relationship, | call the entity at the ‘one’ end the ‘parent’ entity of the relationship; and
the entity at the ‘many’ end the ’child’ entity of the relationship.

Fig. 6q

Ask of a 1:N relationship: Can a child object exist without a parent object? If no, a child must be
owned by a parent, then the relationship line is continuous at the child end.

For example:

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 60

Relationship naming and cardinality

A single object of one class, School|
is related to several objects of
another class, Pupil.

School

A Pupil must be based at one and attends/L
only one School, so the relations hip
is mandatory at the bottom end. Pupil

cardinality=1

cardinality =
registers ! 0,1 or many

Fig. 6r
It is often helpful to name a relationship at both ends, as | have done here.

Ask of a 1:N relationship: Can a parent object exist without a child object?

The relationship that exists between Teacher and Pupil is optional at both ends. Not all
Teachers manage a class. Not all Pupils are assigned to a class with a class teacher, only the
younger ones. So the relationship line is broken at both ends.

Wholly optional

1:N relationship Teacher

Object at both ends ! teaches class of
are independent of :
the relationship in class of

Vi

A Pupil eitherbelongs to a clas

Pupil (ata pointin time), or does not

'7_

Fig. 6s

You may wonder about introducing School Class into the model. Thankfully, the concept is not
recorded in our system, otherwise | would have to worry about confusing ‘Class’ with ‘class’ in
our discussion here.

9.5.1 Three more questions about constraints

There are at least three more questions you should ask about any 1:N relationship.

e Can a parent object have more than one active child object at once?
e Does a parent object retain historic children as well as active children?
e Can a child swap from one parent to another?

It might be possible to extend the notation to show all the answers in a graphical form. But this
way lies madness. If you try to show all constraints on an entity model, you end up with a

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 61

picture that is so large, so rich in semantics, and so complex in appearance that you cannot
use it.

It is better to ask these questions during Event Modelling and object behaviour analysis, and
document the answers there, in the diagrams for each persistent entity class and each
transient event class.

Of course, you may revise or extend the entity model with new entities or relationships after
you have answered the questions.

9.6 N:Nrelationships

You may at first include N:N relationships an entity model of business objects.

N:N Does it hide a concrete real
relationship world entity ?

School >_ __ 4 T eacher Does it hide important data
N that describes the reason fo

a cross-reference between
objects of the two classes?

Fig. 6t

Again, nature abhors a symmetrical or non-hierarchical relationship. You may draw explicit N:N
relationships in the early stages of a model, but you should always resolve them before
completing the specification.

Ask of a N:N relationship: Does it hide a concrete real-world entity? If yes, you should create a
link entity.

E.g. you may conclude that the relationship is established via a Pupil.

™~
registers V shape teaches class of
attends in class of
yAAN AN
Many-to-many relationship made Pupil

concrete as real-woid entity

Fig. 6u

A Pupil is a very concrete entity, but a weak way associate a School with a Teacher. Not every
Teacher is a class Teacher. Not every Pupil is assigned to a class Teacher.

Ask of a N:N relationship: Does it hide important data describing the reason why the objects
are linked? If yes, you should create a link entity.

Asking about this case, you might discover the Employment Contract. You can reveal the

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 62

hidden data by simplifying the N:N relationship into two or more 1:N relationships.

Many-to-many relationship made
concrete as a business entity

employs V shape works under

offered by agreed by

Employment
Contract

Fig. 6v

I will return to discuss how to use the V shape to constrain a system’s behaviour, and some

design issues raised by it.

We've looked mainly at questions about single relationships. Part Two discusses some of the

ways in which relationships may form larger and perhaps more interesting shapes.

The entity modeler

Structural model patterns and transformations

Copyright Graham Berrisford

Page 63

Version: 7
01 Jan 2005

10. Patterns in relational data analysis

This chapter reviews traditional data analysis techniques. As Winston Churchill said in a very different
context: ‘It may be unfashionable, it may be unpopular, it may be unpalatable, but its the truth.” Well, it

is part of the truth. | add a few analysis questions to be asked during data analysis.

10.1 From relations to entities

Do not confuse a database view in the Ul layer with the data structure of the underlying
business. You must decompose aggregate objects displayed in the Ul layer for processing
inside the system.

Business rules belong to the entities in the underlying application, not the aggregate objects in
the Ul layer (though these might unfortunately be called ‘business objects’).

Relational data analysis is a good way to reduce the aggregates of data items found on forms,
screens or data files, into a set of simple normalised relations. Allow us to equate the concepts
of entity and normalised relation for the time being.

Normalisation, a technique used in data analysis, is a fine example of generative patterns, of
model transformation by question and answer. It reduces complex data structures to the
simple building blocks from which they are made. It reduces unnormalised data in stages
through successive normal forms.

The starting point for the example below is the data to be found on a batch of Sale Returns
emailed to head office by a salesman.

UNORMALISED

15T NORMAL FORM

2"° NORMAL FORM

3%° NORMAL FORM

Separate the entity from
the repeating group

Salesman

Salesman

Salesman

Salesman name

Salesman name

Salesman name

Sale return

Sale

Sale

Sale

Salesman name

Salesman name *

Salesman name *

Salesman name *

Sale date

Sale date

Sale date

Sale date

Product name

Product name

Product name *

Product name *

Product price

Product price

Iltem quantity Item quantity Item quantity Item quantity
Cust Num Cust Num Cust Num Cust Num *
Cust name Cust name Cust name

Remove attribute who | Product Product

value depends on part of

Product name

Product name

the key
Product price Product price
Remove attribute who | Customer
The entity modeler
Structural model patterns and transformations Version: 7
Copyright Graham Berrisford 01 Jan 2005

Page 64

value depends on part of | Cust num

the key

Cust name

Fig. 6a

102 Don’t dismiss normalisation

Some object-oriented designers dismiss normalisation, because it is entirely data-oriented, but
there are many things to be said in favour of it.

For one, it encourages you to think in detail about the users’ requirements for information.
Several of the case studies published to illustrate object-oriented methods appear to be
complex and challenging — finding the right classes is relatively difficult or mysterious. My
study of the case studies suggests thet would be easier if the authors had defined some input
and output messages at the start, then (dare | say it) applied a little relational data analysis to
those inputs and outputs!

For another, the normalisation process depends on the analyst choosing an identifier or key for
a data group. The key is underlined in our examples. When a data group is in third normal
form, each attribute is ‘determined by’ or ‘dependent on’ the key. Given the value of an object’s
key there is only one possible value for any given attribute of that object.

Why is thinking about keys helpful?

103 Look for keys to reveal the business perspective

Choosing a key may seem merely an implementation decision. Indeed, you might not decide
between various possible candidate keys for an entity state record until relatively late in the
design process.

But the intention or desire to give an entity state record a key is not just a database concept, it
is a business concept. When you choose a key during relational data analysis you are making
a statement about the business perspective you are taking of the real world.

Users need a key that will enable them not only to:
« distinguish one object from another of the same class, but also to
* map the entity state record onto a real-world entity in the business environment.

One reason for taking required output reports, or a legacy database, as the source documents
for data analysis is that these sources will reveal the things the users already care about
enough to have awarded keys.

10.4 Choosing a key for an entity

The key must uniquely identify an object, and not have more than one value for it. In other
words, the values of the key must be in 1:1 correspondence with objects of the class.

You may have to choose between several candidate keys. Since users need keys that help
them map entity state records onto real-world entities, you should favour natural attributes over
artificial identifiers.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 65

If you have to make up a key from a long list of attributes, then so be it. The important thing as
far as data analysis is concerned is that you have established the business need for a key.

In the old days, designers might have said to choose numbers over text, short items rather
than long ones, and few items rather than many, but the ability of users of a graphical user
interface to select objects from lists now saves people from having to type long multi-item
keys.

10.5 Teaching normalisation as graphical model transformations

Students normally learn normalisation by completing a table such as the one drawn above.
This is a bit like practising scales when you start to play the piano.

Few if any professionals do data analysis the way students are taught to, just as a concert
pianist almost never plays a scale during a stage performance.

Professionals use data analysis to place facts into an existing entity model, albeit an informal
or provisional entity model. They:

¢ reconcile input and output data flows with an existing entity model

o refine an informally defined entity model

e reverse engineer entities out of an existing database schema

Data analysis is a technique for both forward and reverse-engineering. Nowadays data
analysis is a common way to start reengineering a legacy system, it helps you take advantage
of the effort that has already gone into to defining the legacy database.

The analogy between analyst and concert pianist is a poor one, because it is possible to teach
novice analysts to do data analysis the way the professionals do it. The trick is to focus on the
way normalisation reshapes an entity model, on graphical model transformations.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 66

N

10.6 Choosing the key for an unnormalised data group

The analyst starts normalisation by choosing an identifier or key for the entire unnormalised
data group. This is not always easy. The key should uniguely identify at least one other data
item. So the choice of key in figure 6b is a poor one.

Choosing a poor key for unnormalised data has little effect on the entities defined at the end of
the analysis, but it dictates the path that normalisation takes, and it leaves you with a key-only
entity. This key-only entity may turn out to be redundant, not interesting to the business.

10.7 From unnormalised to first normal form

Following the rule that a fork grabs an asterisk - a relationship grabs a foreign key - you can
draw the data groups that result from data analysis as entities connected by relationships. So
let us repeat the data analysis of the example by following generative patterns.

Figure 6b shows the standard pattern for the first normalisation step is to drop out a child

The entity modeler

Structural model patterns and transformations Version: 7
Copyright Graham Berrisford 01 Jan 2005

Page 67

entity.

Notice the instruction to choose a key for each new child entity. We'll come back to talk about
this in a moment. Consider the example in figure 6b.

If you had chosen Product Name as the key for the unnormalised data in a Sale Return, then
Salesman would not end up as an entity on its own. But having chosen Salesman Name as the
key, every other data item is immediately removed as repeating data, data that has several
values for the key, so you end up with Salesman Name as a key-only entity.

In other cases, you might choose to drop the key-only entity. But in this case, the Salesman is
probably an important entity and worthy of record. You may well discover an attribute for
Salesman during data analysis of another form, screen, report or file.

10.7.1 Choosing the key for a repeating group at first normal form

A choice between candidate keys often arises when choosing a key for an entity revealed at
first normal form. Typically the revealed entity is a link or bridge between two or more entities
with simple keys of their own.

Ask of a link entity: What uniquely identifies an object of the link entity?

Consider the choice of key for a Sale object linking Product, Customer and Salesman. Of
course you can manufacture a unique identifying number as in figure 6c.

Simple key Sale Number
a unique identification attribute

Fig. 6¢

But this is not user-friendly. If the users do not already use Sale number in their business, you
might do better to use a compound of those parent entities users do have keys for.

Compound key
A value composed by combining the primary keys of otherclasses

Product Name Cust Num Product Name
Salesman Name Salesman Name Cust Num
Salesman Name

Fig. 6f

The trouble with a compound key is that objects of the parent entities can only be linked once,
by one link object. If you want to allow duplicates, you have to extend the compound with date
and time attributes, or with some other qualifying element or sequence number.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 68

Hierarchic key
a value further qualified by a unique identification attribute that is
meaningless on its own

Product Name Cust Num Product Name Product Name
Sale Number Sale Number Cust Num Salesman Namg
Sale Number Sale Date

The qualified element can itselfbe a
compound key

Fig. 69

The Sale Number in these examples is used to extend the range of values provided by
combining the keys of parent entities. All of these hierarchic keys for a Sale allow the
possibility that two parent objects (Product and Customer) can be joined by several Sales.
We'll come back to consider this kind of case in Part Two, since it implies the V shape is really
a 'Y shape.

10.7.2 Recognising the structure of repeating groups
There is another difficulty with the way data analysis is taught. Listing data items in an
unnormalised data group means you lose sight of the data structure you started with.

Given a complicated document or file, you may need to divide it at first normal form into a
complex structure of parallel and nested repeating groups.

It is impossible to visualise this structure by looking at a list of unnormalised data items. It is
much easier if you record the repeating data groups as distinct entities from the outset, or draw
boxes around data groups on the original document.

10.8 From first to second normal form

The standard pattern for the second normalisation step is to raise a parent entity with a key
that is part of the key of the child.

In general, given any multi-item key it is well worth asking about the classes that might exist
identified with one part of the key as their own key. See Part Two.

109 From second to third normal form and beyond

The standard pattern for the third normalisation step is to raise a parent entity and assign the
determining attribute(s) as its key, as shown below.

10.10 Other normal forms

Fourth and fifth normal forms are discussed in Part Two. Boyce-Codd normal form is a

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 69

variation of third normal form that eliminates possible anomalies where there are several
candidate keys which share a common attribute, a complication that need not concern us here.

10.11Merging of corresponding relations

You will normally merge the end results of various data analysis exercises. You can merge any
classes whose objects are in 1:1 correspondence; this is usually indicated by their having the
same key.

Two of the classes in our little case study pick up an extra attribute from data analysis of other
documents.

Salesman Product Customer
Salesman Name Product Name Cust Num
Mobile Telephone Product Price Cust Name

Notice that Cust Address has sneaked into the Sale class. This happened when analysing the
Delivery notes given to drivers instructing them where to deliver the products that have been
sold.

10.11.1 The two TNF tests

After data groups have been merged, items will have been brought together in new
combinations, so you should apply two tests to ensure that the resulting classes are in third
normal form (TNF).

Ask of a class: the first TNF test: Is there only one value for each data item in the class, given a
single value for the key? If no, there has been a mistake and a first or second normal form
reduction to be investigated.

Ask of a class: the second TNF test: Is the value of an item determined by a non-key item,
rather than the key? If yes, there is a third normal form reduction to be investigated.

For example, is Cust Address really determined by Cust Num, and best moved into the
Customer class? Or perhaps the address is recorded afresh on each Sale, because users use

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 70

it only as the delivery address for the Sale, and a Customer can have many delivery
addresses? Or perhaps the users really need two addresses - one for customer and one for
delivery.

10.12 Don’t overlook historic data

Data analysis is never as easy as presented on training course, because you have to ask
business analysis questions about how data changes over time, and whether historic data has
to be remembered.

10.13The relation shape

A relation is an aggregate of several attributes. Chapter 4 showed you might define each
attribute as a key-only parent entity in its own right. What | call the ‘relation shape’ is a class
with three or more parents.

;'.r
/ Parent Parent ’ " Parent
class / class class

2
Fig. 6 / A

For example, let us say a Product is a type of Ingredient with a unique combination of four
other characteristics, each of them user-defined. You can define each attribute as a class in its
own right, as shown below in a fraction of the full model:

Relation shape |

m\\\\\\\\\\\

Users will define the valid range of each attribute by creating objects of the parent entities.
Suppose it turns out that users start to record products in the database that cannot actually
exist in practice, products with invalid combinations of size and ingredient. Four solutions might

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 71

be designed.

Management solution

A weak solution is to place some kind of security constraint, using a password perhaps, on
who is allowed to set up products in the system.

Ul layer solution

A weak solution is to code the rules as constraints on data items where they are entered into
the system, in the user interface code. This may prove difficult to maintain as the code is
added to several datan entry screens. A stronger solution is to record the constraints in
reusable modules underlying the user interface.

Data services layer solution

A strong solution: specify validation rules applying to data items in a data dictionary attached to
the database management system. Unfortunately, few database management systems come
with a sufficiently clever data dictionary, one that can apply the rules dynamically to a live
system. If you do have a clever enough data dictionary, then think of it as belonging in the
Business services layer rather than the Data services layer.

Business services layer solution

A strong and practical solution: record the validation constraints as a cross-reference table, or
link class, in the entity model of the Business services layer.

[Meshsue] (.ngremem]
A A

Origin Packaging Quality ValidSize for
Ingredient

VM shape domain

ZINCINCINGIN

The introduction of a V shape domain above the State Class currently looks like the best
design option for most applications.

Fig. 6n

Ask of a relation: Will users control the valid combinations of different attributes? If yes, then
create a V shape domain class.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 72

11. Why entity modeling is not enough

11.1 Relational theory is not enough
There are weakness in the relational view of the world.

Data-centred, database semantics are not handled

People have attempted to extend the relational model to accommodate business rules. These
approaches are sometimes called ‘semantic entity modelling’. The difficulty is that these
approaches tend to be so heavily data-centred that you have to think in rather abstract and
difficult ways to discover and define the processing logic and processing rules.

In our view, object interaction and object behaviour analysis is a ‘semantic entity modelling’
approach, though you specify the rules on event models rather than the entity model itself. The
data and process models are all part of one coherent conceptual model.

Objects are key-oriented rather than type-oriented

Relational theory does not account for mutually exclusive or optional data. | will show how
object interaction and behaviour analysis deals with class hierarchies of super and subclasses.

Parents don’t know where their children are

Relational theory suggests that a parent entity should not know about its children. There are no
tables or lists, only foreign keys. This minimises data redundancy, but access from parent to
child involves a great deal of processing redundancy. This is a big factor in slowing down
system performance. Where a database is distributed it is almost inconceivable that a parent
entity should not somehow know where its children are.

This is an issue for the Data services layer and you should not even have to think about when
defining the Business services layer!

How access from parent to child is achieved is a matter for the Data services layer. The
database designer may implement a relationship in either relational or network style. In
network databases, tables and lists are allowed, especially for storing relationships. Thus,
while data redundancy is thus permitted, access from parent to child involves no redundant
processing.

Aggregate objects cannot be stored

You cannot store objects without repeating data in a relational database, because relations
must be in first normal form. | will show this is fine and correct for the Business services layer.
The Business services layer must separate out the low-level normalised classes, partly for
update efficiency and partly so that they can be viewed from many different perspectives.

You may however choose to design and process aggregate objects in the presentation and
Data services layers. Some people use the term business object to describe an aggregate
object in the Ul layer. Once more, be careful not to confuse a database view with the database
itself. Business objects in the Ul layer must be decomposed for processing in the Business
services layer.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 73

To supplement data analysis and overcome the above weaknesses, object interaction and
behaviour analysis techniques are needed.

11.2 Entity modelling is not enough

There are two main techniques that complement entity modelling. Both help to validate and
improve the entity model.

The conceptual Static view:
modelling cube Class T
. . relations hip at_tn butt_es,
Three dimensions . relationships,
of conceptual methods
modelling
Use case view Dynamic view:
communication, selection state machine, states,
criteria for objects, events, event-effects,
preconditions, operations preconditions, operations

Chapter 7 introduces event modelling techniques that can be used in the Event Modelling face
of the cube. The volume “The Event Modeler” goes into much more detail.

11.3 Relationship cardinality is not enough to capture all
constraints

You can specify static and invariant constraints (applied in every case and unchanging) as
properties of data. You can specify validation rules governing the ‘domain’ of a data item, and
you can fix referential integrity rules by specifying the optionality and cardinality of
relationships.

But some constraints are dynamic or changeable, so it is not appropriate to build them
routinely into implementation database structures, or even a logical entity model.

E.g. English law lays down a humber of constraints governing a wedding event: a marriage
must relate two partners, no more, no less; one partner (the husband) is male; one partner (the
wife) is female; both partners must be over 18 years of age; a person can have only one
marriage at a time; a person can only have marriages in their sex of birth. And there are further
preconditions to do with the notice period, the number of withesses, the residential addresses
of the partners, the location of the marriage, and so on.

You need ways to make all constraints explicit, not just referential integrity rules. In general,
constraints are assertions about the actions that are possible. You prevent a data item from
being entered, or a relationship from being established, by preventing an event from taking
place. So you can specify all remaining constraints as preconditions on events.

Chapter 7 includes an illustration.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 74

12. Event Modelling

An overview of Event Modelling techniques that specify how events hit objects in the entity
model.

12.1 Introduction

Level of granularity
>>

Enquiry identification
>>

Event identification
>>

12.2 Enquiry models

Validation of the entity model during analysis

You should validate the classes and relationships by testing that they support all the enquiries
that users say they want to make of the required system. In simple cases, programmers can
do this by defining an SQL query. At an early stage of analysis, especially for complex cases, it
helps to define the enquiry model for the enquiry requirement.

To verify that atomic enquiries within the system functions can get the information they need
by accessing entities - to test that every known output data flow (message, report or file) can
be derived using the relationships in the Entity model - you can draw every enquiry access
path as an enquiry model. This means defining the entry point object (identified by the input
data parameters) and the navigation path along relationships to collect the required output
information from other objects.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 75

Customer

List all Customers
who have have
ordered this Product

Product] =

Product name

0

—
SR

[Order

Order Item

Va
IS

You can redraw the enquiry model from the perspective of the specific enquiry.

List all Customers
who have hav e
ordered this Product

>
Product name

Notice that an enquiry process that follows this particular access path will find the same
Customer many times.

12.2.1 Eliminating redundant accesses

An enquiry may perform redundant processing, retrieve more entities than are necessary for
the required output data flow. If the enquiry is infrequently made, you may assume the output
data flow will be sorted and duplicates removed.

However, if the enquiry is a primary system function, triggered many times a day, you may
perhaps prefer to refine the Entity model so that no redundant accesses are made, by adding a
derivable entity into the Entity model.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 76

List all Customers
who have have

ordered this Product
[Customerj [Product j <:|

{ \ , Product name
Customer .
Order Interest in E ntity added to support
Product the required processing
Order Item

The new entity is not entirely a matter of performance optimisation. The fact that users enquire
about ‘Customer Interest in Product’ so often shows that this associative entity (derivable
though it may be) is a matter of concern to users in running their business.

If you do include such an entity, make sure the text description of the entity starts with the word
DERIVABLE, and name the requirements that is used for. Designers may choose either to
store the entity as a database table, or write relatively complex enquiry processes.

12.2.2 Choosing between alternative paths

If there is only one route through the Entity model from the entry point, then the access path is
obvious from the enquiry model. Otherwise, you have to specify which of several relationships
are followed. You can draw arrows to show this.

List all Husbands
of this Woman

>

Person name
Hu:baE\ Wife

Or you can draw the enquiry model from the perspective of the specific enquiry.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 77

List all Husbands
of this Woman

Person
—>

playing different roles

Person
[hus band]

Marriage

Person name Note that one entity type may
appear twice in an enquiry nodel

12.2.3 Specifying multiple entity roles

Note that one entity type may appear twice in an enquiry model playing different roles. One

convention is the name the entity role in brackets after the entity name.

12.2.4 Historical reports

Don’t forget management and audit reporting requirements. Wherever you find historical facts

are needed on output,you should include historical attributes and relationships in the Entity
model. Occasionally, you might be led to include an extran entity, and restructure the entity

model accordingly.

List all Customers who placed Orders at
the Product Price set on December 14th

) <o

Product name
Order Product
Price

December 14th

E ntity added to support
the required processing

Triage in enquiry access path analysis

The entity modeler
Structural model patterns and transformations
Copyright Graham Berrisford
Page 78

Version: 7
01 Jan 2005

Only document those enquiry models that are not obvious from the specification of the output
data flow and Entity model. Under pressure of time, analyse only the outputs of primary system
functions.

12.3 An event model

An event is like an enquiry except that it updates one or more of the objects it hits.
>>

Events are more complex than enquiries. Events require more careful analysis. You can use
object behaviour analysis techniques to analyse events and define the behaviour of each class
as a state machine composed of event effects.

>>

12.4 Implementation of enquiry and event models in design
The volume ‘Event modelling for enterprise applications’ shows it is not far from an event
model diagram to either a procedural program, or to object-oriented programming.

For example, suppose a recruitment consultant wants to discover which Jobs are available for
an Applicant you must find out:

what Skills the Applicant has, and
what Skill Type each Skill is classified under.
what Jobs are available under that Skill Type.
The graphical representation below shows how the relationships provide the path to select the

Entry Point
Skill Type
List all the suitable

Jobs forthis
Applicant

/N
Access path shown as]
partial view of model Applicant Job
Skill
Fig. 7w

A CASE tool can mechanically convert figure 7w can into Figure 7x.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 79

35 _ i \ il Access pathShowhas il
| Applicant gy Setof foiiiitiitcorrespondencelslilsl
Dol o\ Applicant SKilJs: - © - " afrows petween:classes: - :

CListallthe il RN L

- sujtable Jobs: - :| Applicant |5 Skill Type |_p,
“o i forthis ic il Skl N / :
1 [] S N N NENE NN ENESE

[111IiiDSymbal'showing
Loosls - repetition - -l

Fig. 7x

A CASE tool can mechanically convert figure 7x can into a Jackson-style program structure,
with read statements allocated at the correct points.

The ability of an entity model to support an enquiry access path (however it is documented) is
very important. The access path tells you which relationships are needed to select objects. It
also enables you, in physical design, to design a database which has records, representing
classes, stored so as to provide efficient paths for retrieving information.

12.5 Embedded systems

Our focus is on enterprise applications, but event modelling techniques are useful for other
kinds of system - especially process control or embedded systems.

Methods for designing embedded systems normally focus on behaviour and process modelling
techniques, and pay little or no attention to the entity model. But embedded systems do have
an entity model.

The objects in a process control system may not be numerous or persistent enough to be
stored in a database and connected therein by pointers. However, there is an entity model
behind the scenes, and if you draw it, the model does tell you something. The relationships
specify the paths along which objects may communicate.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 80

13. More entity model shapes

How knowledge of patterns such as double-V shapes and diamonds can give productivity and
quality benefits, helping people not just to draw entity models, but to get them right.

13.1 Triangles and diamonds
A class can participate in several relationships, either as parent or child. Fig. 1a shows a
School is both the parent of many Pupils, and a child of one Local Authority.

The figure also shows three classes that appear in the shape of a triangle. This shape prompts
an analysis question.

Parent Local
Authority

_

Intermediat

Ask of a triangle: For a given parent, are the same child objects discovered down the long
direct relationship as down the two shorter indirect relationships?

Fig. la

If no, then keep the long relationship. You might need it because another relationship is
optional at the child end, or because the bottom-level child has two different parents.

If yes, then remove the long relationship, even though it is a true statement.

Why? First, the long relationship is redundant; it says nothing that is not said without it.
Second, it may wrongly permit the end-user to attach the bottom-level child to two different
parents via the direct and indirect routes. Later sections discuss the question of double parents
in triangles and diamonds.

13.1.1 Diamond shape or boundary clash

Fig. 1b shows that adding Teacher into the picture creates a diamond shape.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 81

Parent Local
Authority

/1N AN -

7
Fig. 1b

The two sides of the diamonds represent what might be called a ‘boundary clash’ between two
conflicting ways for low-level objects to be grouped into a batch or collection.

Intermediate
Entity

Intermediate

.k
|/

13.2 Derivable sorting classes in Y shapes

Ask of a V shape: Can there be more than one link entity for one combination of the two
parents? If yes, then consider transforming the V shape into a Y shape with a derivable sorting
class at its heart.

E.g. Fig. 1c shows the Customer Interest in Stock class clusters all the Orders for the same

combination of Customer and Stock.
(Customer] (Stock]

Customer
Interest in

Fig. 1c

The entity modeler

Structural model patterns and transformations Version: 7
Copyright Graham Berrisford 01 Jan 2005

Page 82

You may discover a key-only relation as a result of applying relational data analysis to an
output report. For example, a report of Orders listed by Customer within Stock, or by Stock
within Customer, may lead you to specify Customer Interest in Stock as a key-only relation or
sorting class.

You may also discover a derivable sorting class when defining an access path to create such a
report.

Some database designers are obsessed with removing all derivable data from the entity
model, careless of the expense of redundant programming effort and processing time. The
three-tier architecture gives us an opportunity to reexamine this assumption.

Entity classes in the Business services layer

If the users’ requirement is for frequent reports that sort Orders by a combination of Customer
and Stock, then the derivable sorting class surely belongs in the entity model. You can now
specify simple enquiry processes that return the results the users want. You can code these
enquiry processes in the Business services layer on the assumption that the derivable sorting
class exists.

Soft classes in the Data services layer

What if the derivable sorting class is missing from the data storage structure? Perhaps the
database designer rejects it, or you have inherited a legacy system without it?

This can complicate the specification or the coding of enquiries that generate the required
reports. Since this complication is caused by the database designers’ requirements, not by
users’ requirements, you should hide the complication from Business services layer processes,
in the Data abstraction layer to the Data services layer.

The idea is that any enquiry process that wants to read a Customer-Interest-in-Stock object will
call the Data abstraction layer to sort through the stored data, manufacture the object and
return it. Such objects, manufactured by the Data abstraction layer rather than stored in the
data storage structure, might be called ‘soft objects’.

The notion that some derived data rightly belongs in the Business services layer runs against
the received wisdom, so | return to soft objects and derived data in later chapters.

13.3 From double-V to Y shape constraint

Is there any similarity between the two entity models in Fig. 1d?

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 83

Two unstructured networks
Department Timesheet
i \}/
Library .
Book Loan AN

Fig. 1d

It is hard for us to spot that these unstructured models are two instances of the same general
pattern. Tools don’t care how messy the diagram looks, but people do.

A tool can help us by redrawing the models in a hierarchically structured fashion, placing the
parent of each relationship above the child. If the analyst always draws the relationship from
the parent to the child, and the tool constrains them to draw one-to-many relationships in this
direction, then the tool can easily remember which end of a relationship is parent and which is
child.

The analyst may request: ‘Please reshape my diagram for me in a hierarchical fashion.” A tool
can respond by redrawing the two models as in the Fig. 1e below.

(By the way, algorithms that try to avoid crossing lines become increasingly useless as the
complexity of a network diagram grows.)

Netw orks restructured into double-V shapes ({f

4
/N I\ /N I\ /N I\
Fig. 1e

After a person or a tool has rearranged the diagrams hierarchically, it is much easier to see
these are both examples of the double-V shape shown in Fig. 1f.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 84

Parent Double Parent
V shape

Fig. 1f
This shape is a generative pattern that prompts you to ask an analysis question.

13.3.1 Turning a double-V shape into a Y shape constraint

The analyst may request: ‘Please highlight or report on any double-V shapes for me.” A tool
might respond by thickening or colouring the questionable relationships, then ask the analyst
the following question.

Ask of a double V shape: Can you tie an object of one child entity to only one object of the
other child entity? If yes, connect the two child entities by a relationship, to capture the
constraint.

E.g. Fig. 1g shows a book can only be loaned to someone who is a member of a library; and a
time sheet must be submitted by an employee within an employment.

(Person] (Depanmenﬂ Employee
. shapes

Hierarchical arrangement makes it easier to see triangles. After asking the earlier question
about triangles, you are left with two Y-shape structures.

Fig. 1g

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 85

(RN

Members hip

N

Fig. 1h

The classes at the heart of the Y shapes in Fig. 1h represent real-world entities. Users create
objects of these classes in order to constrain the creation of objects of the class at the bottom.
But there is another kind of Y shape.

13.3.2 Two kinds of Y shape

The examples so far have revealed two kinds of Y shape. Fig. 1li shows the class at the heart
of the Y shape can be either a domain class or a derivable sorting class.

Two kinds of Y shape

I shape constraint___] I shape grouping |

Parent Parent Parent Parent
Class Class Class Class
DX Ar
Derivable
SortingClass '7 g
r o)) g
V A
70

Child

7
/2
Fig. 1i

Objects of a domain class are created by users. The domain class at the heart of a Y shape
might represent a business entity with attributes of its own (like Membership and Employment

o D

V Domain
Class o

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 86

in Fig. 1h), or it might be no more than a key-only link class that relates its two parents.

Obijects of a derivable sorting class can be derived from the existence of child objects. An
example of a derivable sorting class appears as part of the solution to the problem described in
the next section. But first, a warning that some of our patterns can appear in disguise.

13.3.3 Patterns in disguise

The basic patterns or shapes can be obscured by intermediate classes. Fig. 1j includes a
double-V shape, even though the Job class sits in the middle of one side of one of the two V

shapes.
24N
Applicant
Skill
Fig. 1j

Readers may like to consider ways to resolve this double-V shape for themselves. A possible
refinement of the structure appears later in this chapter.

13.4 Using patterns in quality assurance

The idea of teaching patterns is that analysts should save money by getting the system right
first time. But the patterns are just as useful if you are trying to correct or improve a system
that isn’t working correctly. What follows is based closely on a real example.

The business has an enterprise application for recording what it does to meet customers’
needs. The business supplies ingredients to food manufacturers. Ingredients are packaged in
various ways, by size, quality and so on, to make distinct products, each with a distinct price.
People (‘Contacts’ below) enquire about products. They may be sent a brochure and/or
samples. They ask for quotes; they are given prices for specific products. They place purchase
orders for a quantity of product at either the current price (an attribute of product) or the price
given to them in an earlier quote.

The manager asked for our help. He had already set up a database, using an application
generator, to record customers orders, and requests for information about products. Fig. 1k

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 87

shows the structure of the database.

A multiple-V
Contact Shape
(Enquiry] [Quotation j (Purchase j

Orer

Enquiry
Interest in about Quote Line Purchase
Product Product OrderLine

Problem presented: manyof
these records are missing

Fig. 1k

The manager had quickly generated a system to maintain this database, but problems were
now being experienced with the quality of the information in it. The problems centred on the
multiple-V shape, that is, the four child entities owned by the same two parents, Product and
Contact.

13.4.1 First reported problem

The historical record of a contact’s interest in a product was patchy, incomplete and out-of-
date. Users forget, or cannot be bothered, to set up an Interest in Product record every time
they record an Enquiry, Quote or Purchase Order.

Spotting the multiple-V shape prompts us to ask the question: Is an Interest in Product related
to the various possible reasons for that interest?’ Of course it is. Fig. 1l partially resolves the
double-V shape by setting up explicit relationships in the data structure.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 88

A

A

A

Interest in Enquiry Quotation
Product

Purchase

Order

)

Derivable
sorting class

AN

A A

Enquiry
about
_ Product

Quote Line

Purchase
OrderLine

Fig. 1l

An Interest in Product record is now created automatically, whenever the detail of an Enquiry,
Quote line or Purchase Order Line is recorded for a new combination of Contact and Product.

Note that the model does not match the pattern in Fig. 1i in one way; objects of the new

derivable sorting class need not have any children.

Fig. 1m illustrates the transformation described in the volume ‘Introduction to rules and

patterns’ whereby you might elaborate the model to show the rule that there must be at least

one ‘Reason for Interest’.

The entity modeler
Structural model patterns and transformations
Copyright Graham Berrisford
Page 89

Version: 7
01 Jan 2005

AA A A A

Interest in Enquiry Quotation Purchase
Product Order

Reason for
Interest

A multiple-V
shape

AN AA

Enquiry
about Quote Line Purchase
Product OrerLine

Fig. 1m

The trouble with introducing this rule is that it constrains us never to maintain an object of the
class Interest in Product without a reason. The ‘at least one child’ rule is more rigid than is
required by this business, so | will relax it again.

There is still a multiple-V shape in the model. The three bottom-level classes are all owned by
both Product and Contact parents.

13.4.2 Second reported problem

End-users cannot record for historical analysis whether the price they give for an order line is
the current price, or the price given on an earlier quote (they have some discretion to price
order lines in either way). Also, they lose track of which quotes have been successful, that is,
which quotes have resulted in orders. Fig. 1n resolves the multiple-V shape.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 90

I\ 1IN\ /{\ /}\ /l\
Interest in
Product

Enquiry Quotation Purchase
Order

/NN
Enquiry

about

Product

[A cascade of Y shapes /\/\/{\

Quote Line

You can now trace an Order Line \/}\
via a Quote Line to an Enquiry AN4

Purchase

OrerLine

Fig. 1n

Further analysis of the child entities jointly owned by both Product and Contact may lead you
to ask: Are users interested in whether a quote line results from an enquiry? or an enquiry led
to a quote? or a quote resulted in an order? If so, you might add further relationships to the
model. The exclusion arcs show that not all order lines come from quote lines, and not all
quote lines stem from enquiries.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 91

13.5 V shape domain classes in Y shapes

A third reported problem in the case study centers on another kind of pattern. The reported
problem is that users are recording products in the database that cannot actually exist,

products with impossible combinations of size and ingredient. Fig. 10 shows a pattern | call the
relation shape.

Fig. 1o

[On’gin J [Packagirﬂ [Qualityj [MeshSize] (Ingredientj

Relation shape |
N\ I\
Interest in
Product

Ask of a relation: Will users control the valid combinations of different attributes? If yes, then
create a V shape from the domain classes.

Fig. 1p introduces a V shape domain class.

The entity modeler
Structural model patterns and transformations

Copyright Graham Berrisford

Page 92

Version: 7
01 Jan 2005

[MeshSize] (Ingredient]
/l\ /{\ Y shape
Cconstraint

\

Origin Packaging Quality ValidSize fo
Ingredient
ZINCINCINZIN
I\ 1N\
Interest in
Product
Fig. 1p

The introduction of a V shape domain class above the relation currently looks like the best
design option for most applications.

The entity modeler
Structural model patterns and transformations Version: 7

Copyright Graham Berrisford

01 Jan 2005

Page 93

13.6 Triangles and double parents

It is important to realise that not all triangular or double-V shapes are bad. It would be a
mistake for a tool to automatically remove all such structures from a specification. Below are
three cases where a triangle is a valid structure.

Children with optional parents
Fig. 1g shows a triangle that is valid because one of the short indirect relationships is optional

at the bottom end.

-

.

Z

Employee

Fig. 1q
This case is well-known and has been illustrated by many others. Cases where all
relationships are mandatory at the bottom end are more interesting.

13.6.1 Current and historic relationships

Fig. 1r shows triangle that is valid because there is a current 1:N relationship in parallel a
historic N:N relationship. The current relationship to the link class is monochronous (one at a
time); the historic relationship to the link class is polychronous (several at a time).

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 94

eratiiii-t| Department
EEEEEEEEN

Current - -I-:-

Some argue the current relationship is redundant because it is a subset of the historic
relationship; but removing the current relationship creates redundant processing.

Without it, to find the current Department of an Employee you have to hunt through the historic
memberships for the latest one, and then perhaps check that is still active. This redundant
processing is avoided by making the current relationship explicit.

13.6.2 Double parents

Fig. 1s shows a triangle that is valid because the bottom-level child may have two different top-
level parents.

Department

Fig. 1s

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 95

Ask of a triangle: Is the bottom-level object related to the same top-level object via both sides
of the triangle?

Specifying the constraint that parents are the same

To say that a Task can only be done in the same Department that the Employee is contracted
to, you should remove the long direct relationship.

Specifying no constraint.

To put no constraint on what Department a Task is done in, you can define the Task as having
two Department attributes, one direct and one via Employee.

Specifying the constraint that parents are different.

To say (bizarrely) that a Task can never done in the same Department the Employee is
contracted to - you specify the constraint by defining the Task with two Department attributes
(foreign keys inherited by different routes) with the rule that these cannot match each other.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 96

Department Department
i

Enployee i Enployee

only i may do
AN does (—L ! b

Dept (of task) by
Dept (0f employee)'y,

137 Single and multi-value constraints

There is another way to specify the last rule - that a Task can never done in the same
Department the Employee is contracted to. Fig. 1u shows you introduce a V shape domain
class.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 97

_
7

2/

N

Fig. 1u

Introducing a V shape domain class in this case is an exceedingly clumsy solution, because all
but one Department is valid for each Employee. Constraints that exclude a single value from a
range are normally specified as a rule restricting the domain of an attribute of a class, as
shown on the previous diagram.

However, multi-value constraints are normally better specified in the form of relationships. If
there were a range of Departments for which an Employee is allowed to do a Task, then the
structure above would be a good specification of this constraint.

13.8 Diamonds and double parents

You cannot remove any of the relationships in a diamond shape (unlike a triangle shape)
without loss of information from the specification. But you should still

Ask of a diamond shape: Is the bottom-level object related to the same top-level object via both
sides of the diamond? If yes, you can specify this constraint by defining for the bottom-level
object just one foreign key attribute identifying the top-level object. In section 2, a Pupil has just
one Local Authority name. If no, you can specify this degree of freedom by defining for the
bottom-level object two foreign key attributes, one for each of the top-level objects.

Fig. 1v shows a Fire Appliance can be related to two Counties: the County where the Incident
is that the appliance is attending, and the County where the Fire Station is that the appliance is
based at.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 98

Incident

Fig. 1w shows the answer to the earlier question. It includes a diamond shape. So how do you

specify whether the Interview has only one Skill Type, or may have two?

N

"'QQ’* N
\f:l&m N

T R R R R e R

N

Fig.1w
Specifying the constraint that parents are the same

To say that an Interview can only be arranged for a qualified Applicant who has the same SkKill
Type as that of the Job, you can define the Interview as having only one Skill Type attribute
(the same foreign key inherited by different routes).

Specifying no constraint

To say that there is no rule on whether an Applicant must be qualified for a Job or not, you can
define the Interview as having two Skill Type attributes, without any constraint on their values.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 99

Specifying the constraint that parents are different

To say (bizarrely) that an Interview can only be arranged for an unqualified Applicant, you can
define the Interview with two Skill Type attributes (foreign keys inherited by different routes)
with the rule that these cannot match each other.

13.8.1 Footnote

By the way, the classic example of a diamond shape or boundary clash is the ‘Telegrams
problem’ described by Jackson (1975). Fig. 1x shows key elements of the specification. A
paper tape is divided physically into blocks and logically into telegrams. Both blocks and
telegrams are composed of characters grouped into words. A word may not span two blocks or
two telegrams, it must be contained within one of each. The program must analyse the
telegrams and print a report.

""""" “%

Diamond shape as Input paper
Boundary clash tape

Fig. 1x

Jackson used the technigue of structure clash resolution to design a system of communicating
programs. The first program processed the input tape in terms of blocks, and wrote an
intermediate file of words. The second program processed the intermediate file in terms of
telegrams and produced an output report.

The need for this kind of two-pass serial file processing has been reduced by the introduction
of network databases that can impose many clashing hierarchical structures on the underlying
data. In terms of an entity model, Jackson’s boundary clash appears as a diamond shape. The
left-hand side is the input. The right-hand side is the intermediate file.

A later chapter discusses another design issue raised by the diamond shape - the possibility of a

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 100

process that travels from top to bottom, or vice-versa, via two different routes.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 101

14. Advanced entity model shapes

Some relatively advanced techniques for analysing data structures, including reasons to
contravene 4th and 5th normal forms by maintaining derivable sorting classes.

141 Analysis of compound keys

You may find, perhaps as a result of relational data analysis, that some classes have
compound keys, but there are no parent entities with elements of the key.

Ask of a class with a compound key, what classes exist with keys made out of its parts? Given
a two-way compound key, then try transforming the class into a V shape with two parent
entities.

Fig. 2a shows V shapes you can generate from the classes Holiday Feature and Client

Requirement in a Travel Agency
Feature
| Type

Fig. 2b shows V shapes you can generate from the classes Patient Admission and
Employment Contract in a hospital system.

Simple key
classes

Fig. 2c shows V shapes you can generate from the classes Task and Course Booking in a
personnel system.

Fig. 2c

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 102

Simple key
classes

triple Y shape, as shown below.

E.g. Suppose Surgical Operation has a compound key of Patient, Hospital and Surgeon

TN ES

Given a three-way compound key, then try transforming it into either a double Y shape or a

(perhaps date and time ought to be included as well, but | shall gloss over this). You may draw
a shape with three simple key classes, and two or three two-way key classes.

Assuming all Surgeons in a Hospital are allowed to operate on all Patients in the Hospital,

analysis may reveal the classes shown in Fig. 2d.

JAANNEAAN
Employmen
Contract

/NN
Patient
Admission

Operation class

Surgeon Simple key
classes

2-way key
classes
Double Y
shape .
Surgical 3-way key

Fig. 2d

Fig. 2e introduces an extra class to model the constraint that Surgeons in a Hospital can only
operate on a Patient in the Hospital after the Patient and Surgeon have both signed a consent

form.

The entity modeler
Structural model patterns and transformations
Copyright Graham Berrisford
Page 103

Version: 7
01 Jan 2005

Patle nt Hospltal

Surgeon | Q

Consent to
| Surgery

\\

Fig. 2e

The three-way key class is necessary. A Surgical Operation records an event in the real world
and it has attributes of its own. But some three-way key classes are redundant. They result
from data analysis of a poorly designed input or output document, where there ought instead to
be two or three two-way keys.

14.2 Double Y shapes

Reducing to fourth normal means replacing a derivable three-way key class by two classes
with two-way keys. Fourth normal form is most easily explained in terms of a pattern.

Ask of a double Y shape, does the class at the bottom: have only the keys of its parents (no
additional attributes)? derive mechanically from joining its two parents? If yes, then the bottom
class can be discarded, provided that the two parent entities are retained.

E.g. Fig. 2f shows that the Suitable Holiday class is merely a product of matching Holidays
against Client Requirements. It can be derived at any time, and need not be placed in the
model.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 104

Holiday

Feature
Type

N

Fig. 2f

By way of contrast, Fig. 2g shows that the Holiday Booking class below is not merely a product
of matching Holidays against Client Requirements. It is record of an event in the real world that
users want to remember.

Holiday

Fig. 29
The Suitable Holiday and Holiday Booking classes give rise to a double V shape, resolvable in
the normal way, as shown later.

A double Y shape may be incomplete at the top. Its essence is the V at the bottom - a class
with unique compound of three attributes that appear in parent entities as unique two-way
compounds.

E.g. Fig. 2h shows that if each Holiday is defined with only one Feature, the pattern is different.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 105

Feature Client
Type
Holiday

Fig. 2h

143 Triple Y shapes

Reducing to fifth normal means replacing a derivable three-way key class by three classes with
two-way keys, where there is a ‘join dependency’ preventing all possible combinations of the
key values from existing. Again, fifth normal form is most easily explained in terms of a pattern.
Ask of a triple Y shape, does the class at the bottom:

* have only the keys of its parents (no additional attributes)
* not derive mechanically from joining any two parents?
+ derive mechanically only from joining all three parents?

If yes, then the bottom class can be discarded, provided that its three parent entities are
retained.

E.g. Fig. 2i shows that the Suitable Holiday class below is not merely a product of matching
Holidays against Client Requirements. It is constrained also by the need for the Client to
express an interest in the Holiday.

It can be derived from joining all three parents, and may be discarded from the model.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 106

N\ /1N /N /] »
Holiday Client Stated
\ Requiremen} Interest

14.4 Contravening 4th and 5th normal forms

Designers are familiar with tradeoffs between:

Fig. 2i

* minimising redundant processing versus minimising redundant data

« simplifying enquiry processes versus simplifying update processes.

Theoreticians tend to advocate the latter option in each case. They say to eliminate all
redundant data, including derivable key-only classes, and to minimise update processing. They
don’t say these options may conflict with each other. Consider the derivable sorting class
called Suitable Holiday in the entity model below.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 107

Company Feature Client
Type

Holidayv,

L/
Holiday
Booking %
r
Fig. 2j

Since the system is designed to produce reports of Holidays suited to Clients, and reports of
Clients suited to Holidays, the derivable sorting class will be useful.

Obviously, it will simplify and speed up enquiry processes. Without it, you will repeatedly have
to manufacture Suitable Holiday objects in views of the data structure that users request for
presentation. And you might have to account in some way for earlier Holiday Bookings on a
Suitable Holiday.

Less clearly, the Suitable Holiday class can also simplify and speed up update processes.
When a Holiday Booking is made, you can more easily check any history of previous Holiday
Bookings. When a Client makes a Holiday Booking, you can more easily locate and check any
Holiday Booking already made for the same compound of Client and Holiday.

Overall, it may prove cheaper to maintain Suitable Holiday as a sorting class than to leave it
out. This contravenes the established view of physical database design. See the chapter
‘Clashing entity models’ for discussion of how and why you might maintain a derivable sorting
class in the entity model rather than the data storage structure.

14.5 Tramlines shape

Where a class has a list of similar attributes, you can generalise these attributes into a
relationship. Fig. 2k shows an example drawn from Assenova and Johannesson [1996].

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 108

Generalisation
of similar

IE rrc?((jjuccf Name attributes Product
u
Jan Sales —
Feb Sales N
Dec Sales Monthly
Sales

2

|
Jan Feb cee Dec
Sales Sales Sales
Fig. 2k

The transformation in Fig. 2k is not very common in practical system design. Fig. 2| shows two

more common transformations.
N
Product Month

ZINAIN
Monthly
Sales

Tramines’

After
De Carteret

Fig. 2l

The patterns are discussed separately on the next page.

14.5.1 Creating a generalised attribute

Ask of a class with a list of similar attributes: can the attributes be generalised into a single
type?

E.g. consider the three totals recorded in the Paper class in Fig. 2m. You might show the
common properties of the three attributes by relating all three attributes to a single domain
class. The resulting shape is called Tramlines.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 109

Fig.2m
14.5.2 Creating a generalised relationship

Ask of a tramlines shape: Can the relationships be generalised by creating a V shape with a
child link class?

E.g. Fig. 2n shows the transformation of the tramlines in Fig. 2m.

EELION

_

Fig. 2n

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 110

14.6 X Shape

Finally | come to a shape you often see in large business databases - a core entity,
surrounded by many parents and many children. Fig. 20 shows this as the X shape.

\ \
Fi.ZOR

| call this the X shape (in line with the V,W and Y shapes) but you might better call it a star
shape, since it can have many points, perhaps a dozen parents and a dozen children.

Ask of an X shape: Are there constraints between parents and children that are missing?

This is a rather vaguely-defined shape and a rather vague question. | don’t say how many points the X
shape must have before it is likely to reveal significant missing constraints. Nor do | prescribe what to
do in response to the question. Further research may reveal further rules of thumb in this area.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 111

15. Design for maintenance

Designing an entity model for maintenance, anticipation of amendments.

15.1 Correctness and maintainability

Surveys tell us that maintenance costs far outstrip initial development costs; 70-30 is a
proportion often quoted. Some hold out ‘design for maintenance’ as a primary goal of system
development.

Analysis patterns can help you to design for maintenance and facilitate amendments.

But maintainability cannot be the primary goal. Correctness must be the primary goal. You
should strive to get the system right this time, not next time. If you don'’t strive, you won’t
succeed. And if you don’t succeed, you'll have to spend more on ‘maintenance’ later.

Other surveys tell us it is cheaper to correct errors sooner rather than later. It is obviously
much cheaper to revise analysis documentation than program code in a working system. So
people have proposed ways of exposing errors in analysis and design as early as possible.

One way is to follow an analysis and design methodology that produces graphical design
documentation. Current methodologies have many weaknesses. Above all, they lack effective
quality assurance mechanisms. It is no use having paper mountains of analysis and design
documentation if nobody can tell whether the documentation is any good or not, and
programmers throw most of it away.

Analysis patterns provide a solution to this problem; they provide quality assurance questions.

Another way is to follow the path of ‘iterative development’, rapidly producing prototypes of
parts of the required system. Prototyping makes design results more concrete, more visible, so
you can more easily see if designers are going in the wrong direction and head them off.

An enterprise application will not be entirely right first time. Some amount of trial and error is
necessary. Some amount of iterative development is inevitable. But setting out with the
objective of delivering a wrong system, then developing it by trial and error, is likely to add time
and costs to the overall project.

Iterative development stretches the costs of development over smaller cycles. In effect, it
moves maintenance (which we know to be expensive) into the development phase. Change
control and configuration management become bigger issues. So if you iterate more than a a
couple of times, the overall project will cost more and take longer.

Iterative development runs counter to design for maintenance. Designers who are focussed on
the next small increment won'’t take a long-term view. The code will grow haphazardly with
each iteration into a pile of spaghetti that is hard to maintain. Agilists consequently promote
“refactoring”. And of course, good design up front will reduce refactoring costs.

Iterative development encourages low expectations. Designers who think it normal and
acceptable to deliver unfinished code will not strive hard enough to get the system right before
giving it to users. Designers have an excuse to escape from their responsibility to do their best
work.

Is there a credible way to improve on iterative development? Current methodologies are failing
us. We lack a methodology that embodies professional expertise about designing for

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 112

correctness and designing for maintenance.

Specification and design patterns address this problem; they encourage right-first-time design
and can reduce maintenance effort.

152 Changes in requirements

In one sense there is no such thing as maintenance, there is only further development. The
things you have to do in maintenance are the same as you have to do in development.

If it means anything, design for maintenance means designing the current system in a different
way from how you would design it if no changes were ever expected.

It is meaningless to design for maintenance per se. Flexibility in every direction is impossible.
Changes come from many different angles. You have to decide what changes are likely, and
design with those changes in mind.

There are three basic design for maintenance strategies.

15.2.1 Separating concerns

Some changes are due to new technology, perhaps a new database management system or
new user interface management system. The way to anticipate changes in technology is to
isolate, as far as possible, those parts of a system that are technology-specific.

Other changes are due to new user requirements: people changing their mind about the way
they want to system to operate. New user requirements may be subdivided into ‘correctness’
requirements and ‘usability’ requirements. The way to anticipate changes in these
requirements is to isolate, as far as possible, those parts of a system that are specific to
specific kinds of requirement.

You can separate these concerns using the high-level analysis pattern of the 3-schema
architecture. This architecture is divides an enterprise application into subsystems that isolate
different areas you may want to change.

Software layer User concern Technology concern

Ul layer user-friendliness GUI environment

Business services layer business rules and constraints App server

Data services layer Performance database management system

15.2.2 Loosening constraints to accommodate exceptions

You can anticipate exceptional cases by not constraining the system to accept only normal
cases. This can prove counter productive. Some of the tradeoffs are discussed in the next
section.

15.2.3 Generalising the design

You can generalise the design so that it is easier to accommodate new cases and reconFig.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 113

the system with new rules. See the section after next.

15.3 Loosening constraints to accommodate exceptions

After you have specified constraints within the Business services layer of code, you may find
you have to relax them to deal with exceptions. Users often submit maintenance requests
asking for the freedom to break the normal rules, record unusual cases not previously
envisaged.

A natural reaction is to relax the constraints on datan entry. This increases the danger of
incorrect system usage and gives users the opportunity to screw up the system. Users need a
system that constrains datan entry, prevents garbage from being stored in the database.

The trouble is that to design for exceptions, rather than reduce the constraints on the current
system, can make the system considerable more complex.

15.3.1 Specifying constraints on the normal case

Fig. 3a shows the entity model of the Marriage Registration system, introduced in the volume
‘Introduction to rules and patterns’.

Constraints in class
Person relations hip model

1 Subtyping constraint

Parent has one or other relationship, not bot
/]

One problem might be that changing a Person’s recorded sex would automatically invalidate
all previous Marriage of that Person. All historic Marriages for that Person would now be in a
state inconsistent with the rules of the system - recorded as being between two people of the
same sex.

The solution is to record a Person’s sex of birth separately from their current sex, and apply
the validation constraint only to their sex of birth.

Cardinality constraints
Parent has 0, 1 or many children
Child has 1 parent

Fig. 3a

This tiny Marriage Registration system has caused much debate in our tutorials, on grounds
ranging from design and coding style, to culture and political correctness. Please don’t be
offended if | go on to illustrate laws and societies you disapprove of.

An exclusion arc over the relationships implies that the class at the focus of the arc may be
divided into subtypes. In this case, the two subtypes are man and woman.

15.3.2 Tightening constraints on the normal case

Suppose the Marriage Registration system is bought by a country where sex changes are

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 114

illegal and unrecognised. You might specify a fixed class hierarchy as in Fig. 3b.

Class
hierarchy Person
made explicit - You rarelysee a
class hierarchy
A made explicit like
this in the class
relationship model of
Man Woman o
Z
%
Types

It is normal for an entity state record to belong to many types. You might regard sex and job
title as types of a Person.

Types are not normally represented as class hierarchies in the entity model of an enterprise
application. One reason is that types often turn out to be additive rather than mutually
exclusive - a Person can can have more than one job title at once - a bisexual Person might be
recorded as having two sexes.

Fig. 3b

Another reason (the one that applies here) is that with the passage of time, an entity may
change its ‘type’ many times. You may reasonably expect that most if not all of an entity’s
types can be altered during the life history of an object.

States

The longer an object persists, the more that a type (even one as fixed in real life as male or
female) tends to become a temporary state.

| don’t think of the object as changing class each time one of its types is updated. | think of it
as remaining of the same class, but changing its state. Where a type change or state update
constrains the future behaviour of an object, this is most naturally specified as a state-
transition in the life history. So the type becomes a state variable.

You can specify the cyclical alternation between sex roles as state changes within the state
machine of a Person. This state machine will record the current state, the current sex role, but
not remember past ones.

15.3.3 Loosening constraints on the normal case
Suppose the system is bought by a country where transsexuals are allowed to contract a
marriage in their new sex. After a few months, the users submit an amendment request:

“Can we please be allowed to record the exceptional case where, over time, a Person plays
both husband and wife roles in different Marriages?”

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 115

You might simply erase the exclusion arc constraint, as shown in Fig. 3c.

Person
Less constrained class
relationship model
Fig. 3c

Is it worth removing the constraint on transsexuals remarrying under the new sex, just for the
sake of just one or two individuals?

In general, relaxing a constraint may cause more trouble than it saves, by allowing some
normal cases to be erroneously recorded as exceptions. You have to trade-off giving the end-
users freedom to process rare cases, against specifying constraints that maintain the quality of
stored data for the normal cases.

In this case, the danger is slight. A Marriage is still defined as connecting one Person of each
sex. So users must change the recorded sex of a Person before they can record a Marriage
under their new sex role. It would be difficult to do this by chance, in error.

Again however, changing a Person’s recorded sex would automatically invalidate all previous
Marriage of the same Person. These would now be in a state inconsistent with the rules -
recorded as being between two Persons of the same sex.

The previous solution, of recording a Person’s sex at birth separately from their current sex,
only works if a Person can only change sex once. The proper solution is to record the life
history of a Person’s sexual roles, and attach each Marriage to the period of time that they play
a given sex role.

Transsexual people now allowed
marriages in both of their sex roles

15.3.4 Adding a history of roles

To keep a history of a Person’s sex changes, and record the Marriages contracted within each
sex role, you should extend the entity model as in Fig. 3d.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 116

)

Person T he relationship from Person to
Sex Role is ‘monochmonous’, ong
Recording a at a ime but manyover time.
history of sex /_A¥
changes Sex Role T his apparently persistent type
turns first into transient state

PR when its life history is analysed,

\L_’:/ then into a distinct class when

husband history is recorded.

Marriage

Fig. 3d

Is it worth enriching the specification to record history? Yes if the user wants to be able to
inspect past occurrences of an object’s state. Yes if it helps you maintain the constraints on
system behaviour. It is now possible to change a Person’s sex and record new Marriages,
without invalidating all their previous Marriages.

15.3.5 Distinguishing exceptions from the normal case

Can you have it both ways? Can you place constraints on the normal cases, yet also give end-
users the freedom to process rare cases? Yes, but at considerable expense.

You might design the user interface so that the user is presented by default with the normal
case - the possibility of entering a Marriage between two people in their sex at birth. To enter
an exceptional case, the user must make a conscious effort to pop up a menu and select an
entry for entering an exceptional case - Marriages involving one or more Transsexuals.

Fig. 3e enriches the entity model to show all possible valid types of Marriage as distinct
classes.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 117

Distinguishing the normal
case from the exceptions
Transsexual

“““““
Life
|

! Normal

! Exceptions

Trans Sex Roje

Marnage w
Transsexual
Partners

Marnage w Marnage w
Transsexual Transsexual
Husband Wife
Fig. 3e

In Fig. 3e, more than 50% of the design effort is devoted to handling what are likely to much
less than 1% of the cases.

Is it worth enriching the specification to distinguish normal cases from exceptions? You should
present the development costs for users to decide.

15.3.6 Allowing user to define their own rules

So far, users must change the recorded sex of a person before they can record a marriage
under their new sex role, since a marriage is still defined as having one partner of each sex.

You can anticipate more exceptional cases by giving control over the system’s rules to the
users. Fig. 3f generalises the specification so that users can define new kinds of marriage, with
new combination of sexes, or even more than two people.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 118

Legal form of \
marriage

Fig. 3f &

Fig. 3f is only an illustration, not a serious design. | look further at generalising classes in the
next section.

15.4 Generalising the design
Focusing on the specification of constraints within the Business services layer of code, how do
you anticipate changes, design for ease of amendment, ahead of time?

You can anticipate changes in requirements by generalising aspects of the design. There is a
trade off however. Generalisation can make a system harder to understand, and harder
program, and possibly harder to use.

A rigid hierarchy

Imagine a personnel system that records a company’s organisation hierarchy. You might
specify an entity entity model of the kind in Fig. 3g.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 119

4\

/1N
Rigid hierarchy
v ery specific Department
/1N
Employee

A rigid hierarchy is a generative pattern. You should ask: Is it possible for levels of the
hierarchy to be omitted?

Suppose you find out the system has to record Companies that don’t have Departments,
Divisions that don’t have Departments, and Company Employees who are not allocated to any
Division or Department. Fig. 3h shows a more generic model.

Fig. 39

Organisational
Unit

Flexible hierarchy
more generalised

/N

Fig. 3h

The entity model is smaller and more flexible. On the other hand, the system is a harder for
designers to work with, and it is more difficult to give users the same kind of usability.

15.4.1 The multiple-V shape

Imagine a vehicle licensing system that records the various reasons why a Person is related to
a Vehicle. You might specify an entity entity model of the kind in Fig. 3i.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 120

Fig. 3i

Z

But how many other reasons are there to relate a Person to Vehicle? What about Thief?

Damager?

Ask of a multiple-V shape: Is it better to anticipate extra relationships by generalisation?

(Person J E’ypeofReasoﬂ (Vehicle J

A generalised
link class

Reason for
interest in
Vehicle

Fig. 3j

Again, the entity model is smaller and more flexible. On the other hand, the system is a harder
for designers to work with, and it is more difficult to give users the same kind of usability.

15.4.2 Broader generalisation of classes

Imagine a simple accounts system that records sales. You might specify an entity entity model

of the kind in Fig. 3k.

Application-
specific schema /NN
usedin the

Oder

application layer

Supplier

/NN

Purchase

Fig. 3k

The entity modeler
Structural model patterns and transformations
Copyright Graham Berrisford
Page

Version: 7
01 Jan 2005
121

The model is clear and specific about what entities are to be recorded in the system. If you
translate this model into a data storage structure, then designers can easily write enquiry
programs that report on all the sales for one customer, or all the sales of one stock type. Both
designers and end-users can readily see what the classes are for, and use them correctly.

But suppose your prime design objective is flexibility. Your brief is to make sure the system
can be extended to record new entity types (a Return of Goods, a Salesman), and heaven
knows what else.

To accommodate future requirements, you might specify only a few generic classes: ‘Contact’
instead of Customer and Supplier and ‘Stock Transaction’ instead of Sale and Purchase, as in

Fig. 3l.
Generalised schema
used in the data /NN
e
Fig. 3l

This model is more flexible. To record a Salesman, all you need to do is extend the range of
‘types’ allowed for a Contact. You don’t have to change the structure. On the other hand:

* there is more danger of giving the end-users a system that fills up with garbage. It is easy to
imagine people mistakenly entering Customers as Suppliers, or Sales as Purchases.
Designers will have to work that much harder to constrain how the system used and give users
the same degree of usability.

» the system is no longer so easy for designers work with. The programming is more complex.
You will have to write extra code to test the contents of a Stock Transaction object, to find out
what subclass it really is (Sale or Purchase) before you can process it.

* the system’s performance may be degraded, because events and enquiries that require
access to all the objects of a logical class (all Sales), will have to trawl through all the objects
of the physical class (all Stock Transactions).

15.4.3 Over generalisation of classes

It is easy to get carried away with the idea of generalisation and take it too far. Nobody in their
right mind would go the extreme shown in Fig. 3m.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 122

A generalised schema for the
data storage layer that will
preventyou from having to
restructure or reorganise the
database

Relationship

Fig. 3m

Or would they? There is a real motivation to do this, the cost of ‘data migration’. Data migration
is a serious issue in system maintenance and its one of the issues | come back to in chapter 6.

15.4.4 Remarks

Briefly, other chapters suggest you can have your cake and eat it too. You can separate the
entity model from the data storage structure. You can code the entity model in the Business
services layer on a business rules server - where it can be changed without the need for data
migration. You can code the more generalised entity model as the data storage structure on a
data server - where it will be sufficiently flexible to reduce the need for data migration. You may
find it is not easy to do this using current technology. However, SQL is a natural tool for
implementing the Data abstraction layer that is necessary to achieve this separation, and
ODBC technology is also helpful.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 123

16. PART THREE: RECURSIVE ENTITY MODEL
SHAPES

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 124

17. Kinds of recursive structure

Fig. 4a places recursive structures into a three-by-three matrix. Remember, | always declare
one end of the relationship to be the master (or top) and the other end to be the detail (or
bottom).

Fig. 4a

This matrix classifies recursive problems into different kinds whose entity models take different
shapes.

171 From constrained to relaxed

The less constraints you have to build into your model, the simpler the design. The more
constraints you have to model, the more complex the design.

So, it is generally easier to design a system with variable-depth-network recursion (top-right
corner of the matrix) than with fixed-depth-linear recursion (bottom-left corner of the matrix).

In practical enterprise application development, you tend to find mainly the more relaxed kinds
of recursion. So we'll start with simple examples of variable-depth recursion in the top row of
the matrix.

In academic computer science courses, you often find the more constrained kinds of recursion.
We’ll come back later to consider some case studies that illustrate patterns for more
constrained kinds of recursion.

(By the way, many of the published design patterns for object-oriented software construction

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 125

feature recursive communication between objects of a class. Two of the more easily
understandable examples are shown in the book ‘object-oriented and business data’.)

172 Three patterns for variable-depth recursion

Variable-depth recursion is more common in enterprise applications than fixed-depth
recursion. This section shows the typical entity model shapes.

17.3 Linear variable-depth recursion

Fig. 4b shows a List, an ordered sequence of Entries. Entries may be added at the top, or the
bottom, or the middle.

Fig. 4bl

An entry in the middle has a one-to-one relationship to the entries on either side of it, the prior
and next entries.These two relationships can be collapsed into a single relationship.

The relationship is optional at both ends because there must be a first and a last entry. And
because if this is an enterprise application that only records lists rather than controls them, one
might record an entry in the middle of the list before either of its neighbours.

One might store in each entry the key of both next and prior entries, but the convention in
relational data analysis is to this is optimise this - to store either one or the other as a foreign
key but not both. You can distinguish the primary key and the foreign key with role names:

Entry Number (this) mandatory primary key

Entry Number (next) optional foreign key

17.4 Hierarchic variable-depth recursion

Fig. 4c shows a management hierarchy. Each manager may manage several other managers,
down to the bottom level where a manager manages employees rather than other managers
(but we don’t record employees here).

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 126

Fig. 4c

Again, the recursive relationship is optional at both ends, and following relational data analysis,
the detail class will store the identity of the master class as a foreign key. Again, you can
distinguish the primary key and the foreign key with role names:

Manager Name (self) mandatory primary key

Manager Name (manager) optional foreign key

17.5 Network variable-depth recursion

Fig. 4d shows a ‘parts explosion’ problem. All but the lowest-level Components in a warehouse
may be composed of several lower-level Components. All but the very largest Components
may be used in composing several different larger Components. It is important to be able to
find out which Components something is made of, and which Components something can be
used to make.

Some Components are not composed of other Components and are not used in composing
other Components. However, you cannot predict what Components a given Component may
be composed from, or used to make, in the future.

Developing the previous pattern, you might draw the model shown in Fig. 4d:

Fig. 4d

But the many-to-many relationship in Fig. 4d is itself a generative pattern. Fig. 4e shows that
resolving this in the normal way leads to a classic V structure, except that the two masters of
the V are collapsed into one.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 127

Fig. 4e

An object of the detail class forms a cross-reference between two different objects of the
master class. In carrying out relational data analysis, the detail class holds the primary keys of
the two masters. You can distinguish these keys by role names.

Component Number (made Component) mandatory foreign key
Component Number (used Component) mandatory foreign key

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 128

18. Things to look for in recursive structures

18.1 Constraints on the two masters of the link class

A constraint that applies most many-to-many link objects is that they cannot link one master
object to itself. The normal way to specify this constraint is as a statement applied to the
foreign key attributes of the link class. For example:

Manager Name (manager) not = Manager Name (self)

You should be aware that this constraint is not sufficient to guarantee an entity cannot relate to
itself more indirectly. How to stop the situation where Manager A manages Manager B, who
manages Manager C, who manages Manager A? You need to impose a more elaborate rule
that might be expressed as ‘Do not create an object as belonging to master object that that it
already owns as a detail object.’

Most business database designers ignore the problem. They would say that if the user is silly
enough to create objects in such a structure, they do so at their own risk. In cases where it is
needed, the rule is best specified in specifying the logic of the event that creates a new object
(the event must follow the recursive relationships and fail on finding an invalid self-reference).

18.2 Key-only and concrete links

In most of the examples people use to illustrate network recursion, the link class is specifically
designed to relate two objects of the master class. It is primarily a cross-reference. Often itis a
key-only class.

In other examples, the link class is a concrete entity in its own right, and the recursive
connection between objects of the master class is almost incidental. Fig. 4f shows an example
on the right.

Fig. 4f

A Person who plays the role of committee chair on one or more committees is related to one or
more other Persons playing the role of reserve committee chair (and the other way around of
course). But this recursive relationship is almost an incidental feature of the situation in which a
Committee has two chairpeople - two relationships to Person.

It seems highly doubtful that anybody will every enquire of a Person - which chairpeople are

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 129

they related to via Committees? However, if they did enquire, you could design a simple
enquiry process to retrieve the information for them.

18.3 Symmetrical and asymmetrical links

Fig. 4g divides recursive structures in a more curious way, into symmetrical and asymmetrical
cases.

Fig. 49

Fig. 4h shows some asymmetrical examples, where the two masters of the detail are different,
and can be named differently.

Fig. 4h

Given a Component, you use one relationship to list all the Components is it made of, and the
other to list all the Components it goes to make.

Given a Person, you use one relationship list all their husbands, and the other to list all the
wives (depending on their sex).

Fig. 4i shows some symmetrical examples, where every detail has two masters, but there is no
way to differentiate one from the other.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 130

Fig. 4i

The examples help to reveal a practical difficulty in drawing an enquiry access path for
symmetrical cases.

Given a Town, you cannot use one relationship to list all the Towns it is connected to by a
Route, because it is arbitrary whether that Town is recorded as End 1 or End 2 in the Route.

Given a Person, you cannot use one relationship to list all their Friends, because it is arbitrary
whether that Person is recorded as Friend 1 or Friend 2 in the Friendship.

To list all of a person’s friends, or all of a town’s neighbouring towns, you are obliged to make
any enquiry down both relationships (or else record each link entity twice, reversing the
sequence of the foreign keys in the second).

What is going on here?

18.4 Turning sets into lists

We set out to model things in the real world and classify them into sets. There is no order to
the things in a real-world set. There is no precedence between the friends in a friendship, or
the towns connected by a route.

But during software design we turn sets into lists. A list is ordered, one thing comes after
another. When we represent an unordered set by an ordered list, we are obliged to impose a
sequence on it. We are obliged to list one friend before the other, one town before the other.

So there is an inevitable mismatch between the real world and the implementation. This is the
reason why you cannot devise a simple enquiry process to list all of a person’s friends, or all of
a town’s neighbouring towns, without duplicating all the link data twice.

185 Modelling events that maintain recursive structures

The entity models for recursive problems can look deceptively simple. Specifying processes to
upadte recursive data strucures can be relatively difficult.

Consider the construction and deletion events of an object in a recursive structure. One event
can appear in the state machine of the master class as having both ‘gain’ and ‘loss’ effects on
different objects of the class. You have to distinguish the event effects with role names, much
as you distinguish the attributes in relational data analysis.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 131

Consider the construction event of an object in a network variable-depth recursive structure.
When does it happen? You have to decide whether Composition Relationships are only
created and destroyed on the birth and death events of a Component, or whether the users
need additional events to create and destroy a Composition Relationship at any time between
existing Components.

| find that methodical event modelling (supported by methodical object behaviour analysis)
does lead economical solutions of the kind that are intuitively correct. The most difficult part is
naming the event effects, since several events will affect different object instances of the same
class, and you need to be careful to give these event effects a role name.

18.6 Fixing one end of the recursive structure

Fig. 4j shows a royal succession that starts with the declaration of a new king or queen. From
that point on, each monarch inherits the throne from the previous monarch. Each succession is
a one-to-one relationship between two monarchs.

Fig. 4j

But given that the first monarch has a fixed and unique place in the lineage, perhaps you
should be more specific. Fig. 4k shows you might introduces subclasses and split the original
one-to-one relationship into two halves - the next and the prior aspects of the relationship.

Fig. 4k

We'll explore the use of subclasses in the next section.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 132

19. Two patterns for fixed-depth recursion

Fixed-depth recursion is perhaps more common in academic and software engineering
problems, but examples do occur enterprise applications.

19.1 Hierarchic fixed-depth recursion

Consider for example a map spotted with sites of interest. Each site may be divided into areas;
each area may be further divided into sub areas; each sub area may be further divided; and so
on down to the level of ‘elementary areas’ that are not sub-dividable.

A site is an area that cannot ever be part of a larger area. A site may contain many buildings.
Each building on a site must be wholly contained in one ‘elementary area’ (though this may be
the site itself).

The first attempt in Fig. 4l is somewhat ambiguous. The optionality of the recursive relationship
allows all areas not to be part of a wider area.

Fig. 4l

The second attempt in Fig. 4m is more explicit, but there is still some ambiguity surrounding
the optionality of the recursive relationship.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 133

Fig.4m
Fig. 4n removes the ambiguity, making all constraints explicit in the data structure.

Fig. 4n
Fig. 4n is interesting as a specification of constraints, but in developing event models to specify
the processing of examples like this, you will come to a different view of what the distinct
classes are.

Event modelling view of the same data structure

Fig. 4gq shows the general pattern for modelling a fixed-depth hierarchic recursive class. It
involves only three state machines - a basic class and two parallel aspect classes that specify
what is different about the special instances of the first or top object and a last or bottom
object.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 134

Fig. 40

Notice how subclasses roll up into their superclass. The book ‘object-oriented and business
data’ describes how and why in more detail

Don’t forget we're talking about the specification of the Business services layer. In Data
services layer, you might roll all the classes up into one database table. The attributes of the
subclasses may be stored in mutually exclusive columns of the table for the basic class.

19.2 Network fixed-depth recursion

Consider for example a variation of the ‘parts explosion’ problem, with the extra constraint that
you know when recording a Component whether it is composed of other Components or not,
and whether it is used in making other Components or not.

Fig. 4p shows the ‘typing’ of a Component can never be changed; it remains ‘elementary’ or
‘composed’, and ‘composing’ or ‘non-composing’, for all its life.

Fig. 4p

The entity modeler

Structural model patterns and transformations Version: 7
Copyright Graham Berrisford 01 Jan 2005

Page 135

Again, Fig. 4p is interesting as a specification of constraints, but in developing event models to
specify the processing of examples like this, you will come to a different view of what the
distinct classes are.

Event modelling view of the same data structure

Fig. 4q shows the general pattern for modelling a fixed-depth network recursive class as state
machines. It involves four state machines - a basic class with two parallel aspect classes, and
a link class.

Fig. 4q

The two parallel aspect classes specify what is different about the special instances of a first or
top object and a last or bottom object.

19.3 Transient types as state variables

Often, the top and bottom objects in a recursive structure may change. In other words, the
‘topness’ and ‘bottomness’ types of an object are not fixed.

Where a type can be changed over time, the distinction between the ‘type’ and the ‘state’ of an
object is blurred. It is rarely a good idea to model changeable types as subclasses in a data
structure. The subclasses are better specified as options in event models and state machines
than as subclasses in an entity model.

The standard entity models for fixed-depth recursion show the top and bottom types as
subclasses that roll up into their superclass. The state machine of the superclass specifies only
that behaviour that differs between subclasses, as mutually exclusive options in the state
machine. The state variable of this state machine is in effect a type variable; it tells you what
subclass applies.

What happens if you try to extend the standard fixed-depth model to handle a variable-depth
structure? Suppose the top node is fixed, but the bottom node may be replaced. The

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 136

bottomness of a node is now a temporary state rather than a fixed type. You could introduce a
class called ‘period of time as a type’, between the master class and its subclasses.

Fig. 4n

You might well specify a period of time as a distinct class in this way if you need to keep a
history of each period that each node was at the bottom of the structure.

Normally, past periods are forgotten, and the period of time is represented only by an iterated
cycle inside the state machine of a higher-level persistent class. So all the lower-level classes
disappear into the state machine of their master class.

If the top node were also variable, and you follow this line of reasoning through, you end up
returning to the much simpler entity model | presented for a variable-depth hierarchic structure
earlier.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 137

20. Examples of constrained linear recursion

From the design point of view, a relaxed recursive structure is not so interesting as a
constrained recursive structure. The most interesting of all is a fixed-depth linear recursive
structure.

I have worked through four case studies of linear recursion where one or both ends is fixed,
from entity model to processing code. This section presents three of the resulting entity
models.

Note how the standard pattern for fixed-depth recursion remains visible in the implemented
solutions.

201 The Eight Queens problem

Dijkstra (1972) codes the Eight Queens problem as a peculiar kind of first-in-first-out stack.
The main task is to model then implement the behaviour of a queen as she steps along a row
of a chessboard looking for a safe square to sit in. Fig. 4s shows the entity model reverse-
engineered from our coded solution.

Fig. 4s

As the patterns in this chapter have suggested, it turns out that what you need to model as
state machines are the parallel classes QueenBasic, QueenFirstness and QueenLastness.
The subclasses appear only as mutually exclusive options within these state machines, not as
distinct machines.

20.2 First-in-first-out shelf

The main task in the next example is to model then implement the events that store and
remove ltems from a first-in-first-out Shelf. Fig. 4t shows the entity model reverse-engineered
from our coded solution.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 138

Fig. 4t
| have shown the ‘classes’ that disappear during object behaviour analysis into the state
machine of their master class, as boxes without solid boundaries.

It turns out that what you need to model as state machines are the parallel classes (SlotBasic,
SlotBottomness and SlotTopness); the subclasses and periods of time beneath them appear
only as components within these state machines, not as distinct state machines.

20.3 Chained list

The main task in the final example is to model then implement the insert and delete events that
manipulate Items in a chained list. Fig. 4u shows the entity model reverse-engineered from our
coded solution.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 139

Fig. 4u

Again | have shown the ‘classes’ that disappear during object behaviour analysis into the state
machine of their master class, as boxes without solid boundaries.

It turns out that what you need to model as state machines are the parallel classes (ItemBasic,
IltemFirstness and ItemLastness); the subclasses and periods of time beneath them appear
only as components within these state machines, not as distinct machines.

20.4 A fourth example

The fourth case study | looked at was a very simple last-in-first-out stack. | did follow the
standard design pattern, but the design was so trivial and so far optimisable by following
various optimisation tricks, that very little of the pattern remained by the time | had finished with
it. The design was transformed into less than a dozen lines of code.

(The last-in-first-out stack turned out to be interesting from a different point of view. It is better
for revealing optimisation tricks than for illustrating a standard pattern for recursive design.)

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 140

21. Conclusions drawn from the case studies in
recursion

Some have challenged us with: “You cannot reconcile the modelling of state machines with the
object-oriented modelling of class hierarchies’ or ‘There are rules you cannot specify as tests
on state variables.” Some throw in arguments recalled from their computer science course
such as ‘You cannot specify a stack using a regular expression’.

The detailed workings of the case studies (not shown here) support my claim that you can
meet all these challenges, some by contradicting them, some by accommodating them.

You can reconcile inheritance with state machines

The case studies demonstrate the principle from our paper in the Computer Journal (1994) that
you can accommodate inheritance in state machines by specifying the subclasses of a class
as mutually exclusive options within one state machine. So a type variable becomes nothing
more or less than a state variable.

You can equate classes with state machines

The case studies demonstrate the idea from chapter 5 that you can equate a class with a state
machine. There are some cases where it seems a single variable is best maintained by more
than one state machine (so ‘encapsulation’ is broken), but these are very rare and the principle
is easily bent to accommodate them when they happen.

The full workings of the case studies exemplify some of the tricks that you need to know about
how to model classes in the form of state machines, such dividing a class into parallel aspects.
And importantly, the case studies illustrate how to coordinate state machines via event models,
and how to turn these event models into working code, object-oriented or not.

You can apply constraints by testing cardinal numbers

The last-in-first out stack case study (not shown here) shows you can derive a simple solution
involving precondition tests on the value of a cardinal number from a more complex solution
involving precondition tests on the keys and state variables of objects, by well-defined
transformation steps. Given that the transformations are understandable and reasonable, you
can jump to designing the simple solution without any academic concern about the validity of
the approach.

You can solve academic problems using our design techniques

The case studies show that the structured design techniques developed for enterprise
applications are equally well suited to computer-world systems. Our notations and techniques
are based on those in the UK government’s Structured Analysis and Design Method (NCC
Blackwell, 1995). Some treat SSADM as only a fuzzy method for information analysis and miss
the surprisingly formal method for computer science that it contains.

The case studies show you can completely ‘solve’ even obscure design problems like
Dijkstra’s Eight Queens problem using an entity model, object behaviour analysis and Event
Modelling.

Other case studies suggest the same analysis techniques apply equally well to embedded
systems such as real-time process control systems.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 141

All computer systems have at their heart a set of communicating state machines. We build
these as a model of real-world objects and events in the Business services layer.

Prototyping the user interface may help to reveal the objects and events but it cannot completely
specify them. Quite distinct effort is needed for analysing, specifying and implementing the Business
services layer. This distinct effort involves thinking in ways made explicit by our three-way conceptual
modelling techniques.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 142

22. PART FOUR: CLASS HIERARCHIES

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 143

23. Bottom-up class hierarchies

Use and abuse of generalization in an entity model

Given some features are shared by several objects, you can abstract these features into a class
specification, and identify the objects as members of that class.

Given some features are shared by several classes, you can declare them as subclasses of a
generalised superclass which owns the shared features. A class hierarchy shows entity types divided
into subtypes.

Itis all too easy to get carried away by generalisation. Questions to be addressed in this paper include:

¢ How much generalisation is enough? Required? Desirable?

e What is the difference between an enterprise model, a business rules model and a database
structure?

e What is the difference between a business class and a generic class?

¢ When should we introduce generic classes into an entity model used for system
specification?

Some of the conclusions may surprise you, because they are contrary to practices that are widely
employed by data architects in the IT departments of large enterprises. The big conclusion is this:

Guideline: The same high-level abstractions or generic classes that are so useful to the
enterprise entity modeler and analyst, often turn out, when it comes to the detailed design of a
specific system, to be only minor optimizations.

23.1 Case study

The Financial Regulation Agency (FRA) requires a system to monitor how far Independent Financial
Advisors influence the formation of contractual agreements between Financial Institutions and their
Customers. The main business rules are:

An Account is a contractual agreement between a Financial Institution and a Customer. An Advice
Contract is a contractual agreement between an Advisor and a Customer.

Some Accounts result from an Advice Contract. An Advisor may lead to a Customer to create several
Accounts, under the relationship defined by one Advice Contract.

The database must record the name and address of each relevant Financial Institution, Advisor and
Customer, and the start and end dates of relationships between them.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 144

23.1.1 Finding business classes

It is good idea to start by naming the things the users want to monitor and perhaps control, and to use
the terms the business people use. E.g.

¢ Financial Institution
e Account

e Customer

¢ Financial Advisor

e Advice Contract

You might slowly be able to move the business towards using a new, more generic language. But it is
not a good idea to start there. And you will still need to analyse and understand the specific concepts.

23.1.2 Finding business relationships

You go on to look for associations between pairs of classes and draw them as relationships. You can
resolve any many-to-many relationship by naming the link class that is the reason for, or result of, the
relationship. E.g.

e An Account is a cross-reference between one Financial Institution and one Customer.

¢ An Advice Contract is a cross-reference between one Independent Financial Advisor and one
Customer.

“Interesting. | have often done this in explaining the idea of relationships to those unfamiliar
with the idea.” Michael Zimmer

So, a first attempt at building an entity model might be:

Financial Customer Financial
Institution Advisor
! ! ! :
T G WA
classes
Account Advice
Contract

Notice that the relationships specify constraints on associations between objects. One obvious
constraint is that the system cannot relate objects in two classes that are not connected by a
relationship in the model.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 145

23.2 \What makes a good business rules model?

A good business rules model has two features that are worth noting here.

23.2.1 Objects should be recognisable by users

A business rules model is built at the level users can discuss. Users should recognise the difference
between the classes you define. In addition, users must be able to differentiate between objects within
one class; and for this, they need a uniqueness constraint to be placed on some or all of the data
attributes of the objects.

I loosely distinguish between 'firm' and ‘fuzzy' classes.

'Firm classes' are composed of objects so fundamental to this or another enterprise that the objects
must be labelled with a unique identifier for the business to succeed.

E.g. a laundry business attaches a numbered label to each item in a customer's pile of laundry; so it
can reassemble the pile after washing. The business simply cannot succeed without these numbered
labels.

E.g. a clearing system cannot work without unique codes to identify banks, their accounts and
transactions on those accounts.

The best object identifiers are those that exist not only in a computer system but also in the real world.
So, when a computer system is introduced, the object identifiers will be available to users on datan
entry.

'Fuzzy classes' are composed of objects that cannot easily be identified. This means it is easy to
create duplicate objects by mistake. Of course, a computer system can generate a unique number for
each object in a class, but such system-generated keys are no help unless or until they become used
in the business world.

E.g., consider the five classes in our model so far. There are four firm classes and one fuzzy class. The
FRA provides unique reference numbers for Financial Institutions and Advisors, who in turn provide
unique reference numbers for Accounts and Advice Contracts. But how do users identify Customers?

Fuzzy classes are a big headache. It is difficult to identify objects and prevent duplicates. But let us
ignore the pain for now and move on.

“Even with what you call firm classes, it really is hard to identify objects and prevent duplicates.
We have a whole operational unit to deal with clients of the government healthcare system,
and there are still lots of data quality problems centred around identification of individuals.”
Michael Zimmer

23.2.2 Enquiry requirements should be supported in an obvious way

Back to the requirements. How do designers list for a given Advisor, all the Accounts that have resulted

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 146

from their Advice Contracts? A logical relationship is missing from the model. Adding the missing
relationship, | arrive at this model:

Financial Customer Financial
Institution Advisor

! '

Advice
Contract

A

Account

A

Missing
relationship

Note that putting business rules into the database structure

e constrains system update processing as it should be, and
¢ simplifies enquiry processing, but
e may make it harder to accommodate subsequent changes.

The access path for the enquiry is shown below.

Obvious Financial QMI
access path Advisor
list all business

generated by
financial advisor

Advice

Contract

Account

“I think relationally, so | don't think of navigation so much as joins. For a join, there is no
particular starting point for the path.” Michael Zimmer

Ah! Not thinking about the navigation routes or access paths of processes is one of the main reasons
why people fail to specify the ‘right’ relationships in entity models.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 147

23.3 Generic classes and relationships

The main topic of this paper is the introduction of generic classes and relationships into a model that is
to be used for processing.

What is the difference between a business class and a generic class?

e A business class should correspond to a set of objects that business people recognise as
sharing similar features.

e A generic class is a generalisation of two or more business classes, at a level higher than
that talked about by business people.

Consider generalisation in the case study. The Financial Institution, Independent Financial Advisor and
Customer classes share features, a name and address attributes. Similarly, the Account and Advice
Contract classes share features, start and end date attributes.

Therefore, you might abstract two superclasses. You have to invent terms to name them, since you
have moved above the level that users talk about. The names | choose are: Party and Inter-Party
Contract. Now it becomes possible to build a much more abstract model of the business requirements.

Generic
class es

Inter-Party
Contract

The paper later in this series called <Enterprise entity models> suggests this may be OK as an
enterprise model, or as a highly generalised database structure but:

e What are the keys of these classes? The keys must be artificial because these superclasses
are abstractions, fuzzy classes, and not things the business people talk about or recognise.

e And how do we support enquiries? E.g., List for a given Advisor, all the Accounts that have
resulted from their Advice Contracts? The required access path through the abstract model is
obscure.

Obscure Party m
access path
list all business

generated by
financial advisor

Inter-Party
Contract

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 148

This is a poor specification of the enquiry. The problem is that the business rules are missing. If the
rules are not in the diagram, then they must be in documentation behind the scenes.

A business rules model is not just a diagram of classes and relationships; it includes the detailed
specification of each class and relationship, and all the business rules contained therein.

So where do you specify the various processing constraints on how Inter-Party Contracts are created
between Parties? Just a few of the constraints to be specified are:

¢ an Inter-Party Contract cannot associate classes not declared as subclasses of Party,
e an Inter-Party Contract cannot associate Financial Institutions and Advisors,

¢ the only way an Inter-Party Contract can be related to another Inter-Party Contract (by means
of the recursive relationship) is where the parent is an Advice Contract and the child is an
Account.

The companion volume, The Event Modeler, introduce several ways to specify constraints. The focus
here is on using an entity model to do this.

23.4 Showing generic and specific in one model

The main problem caused by drawing a class hierarchy of super and subclasses is not to do with the
classes, but to do with the relationships between them. Do you need both super and subclass
relationships? Three possible models might be drawn:

23.4.1 Model with generic & specific relationships

Generic and

Advice
Contract

specific Paty | T InterParty [
relationships \ J-===--mm--mm- Contract
[|
Financial Customer Financial
Institution Advisor

This is unacceptable, because there is redundancy. The generic relationships say nothing that is not

The entity modeler

Structural model patterns and transformations

Copyright Graham Berrisford

Page 149

Version: 7
01 Jan 2005

already said by the specific relationships.

23.4.2 Model without specific relationships

Generic
relationships only
Party | T Inter-party
..................... Contract
N\
|

Financial Customer Financial Advice
Institution Advisor Account Contract

Diagrams like this are often drawn. The papers on <Enterprise models> suggest they may pass as
enterprise models, but they make poor system specifications, because too many missing business
rules are missing.

23.4.3 Model without generic relationships

The third model below shows specific relationships but not generic relationships.

@

Interparty

Contract
_

Financial Customer Financial
Institution Advisor
Specific

relationships only

Advice
Contract

Account

This seems the best model of the three in terms of specifying business requirements. This brings us to
the second conclusion that may surprise you. If you draw specific subclasses, you ought to draw
specific relationships. This is not absolute rule, just a guideline.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 150

Guideline: Where we take the trouble to specify subclasses in a business rules model, then we
ought to specify the relationships down to the same level of specialisation.

MICHAEL: I think, in practice, that is what | would do.

DAVID: In your example, you divide Party into three subtypes: Financial Institution, Customer and
Financial Advisor.

It is arguable whether a Financial Institution is inherently a Party, but Charlie the Customer and Sally
the Financial Advisor certainly are not Parties. They were not born as a Customer or a Financial
Advisor. They were Persons first and that is the nature of them as entities. Only later did they enter into
relationships that provided them with those roles.

GRAHAM: Sure, but yours is a model of the real world as you see it. Mine is a model of a specific

problem domain. My customer didn't know Charlie or Sally when they were born. And frankly doesn't
care a jot about their role as human beings.

23.5 Specification and programming costs of generalisation

During specification, a generic class may cost more, by adding complexity to an entity model, than it
saves by removing replicated class features. Not always, but often enough to be a concern.

During programming, a generic class usually makes it harder for designers to write programs.

Generic classes are often promoted as a means to save effort at amendment time. Even here the
picture is far from clear cut. Let us see by way of example.

23.5.1 Adding a new attribute

Suppose users want to record post codes separately from addresses. The Party superclass provides
the Single Point of Specification for this amendment, but this only works if the enhancement applies to
all subclasses of Party.

Moreover, inserting a post code attribute into three classes is not a big deal; changes to relationships
are more of a problem.

23.5.2 Adding a new class and relationships
Suppose the term 'Independent’ means only that Financial Advisors are free to take commission from
several Financial Institutions. Users now want us to record the contractual agreements (Commission

Contracts) formed between Financial Institutions and Financial Advisors.

A Commission Contract is a cross-reference between a Financial Institution and an Independent
Financial Advisor. A Commission Contract may be regarded as a third subclass of Inter-Party Contract.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 151

You can easily extend the model with the new class, and draw relationships to it from the existing
classes.

>> diagram <<

Does the presence or absence of the abstract superclass (Inter Party Contract) make much difference
to the amendment effort? The generic class saves us specifying two attributes (Start and End Dates)
for a Commission Contract and makes us specify an extra generalisation relationship. In practice,
these savings and costs are too small to be of much concern.

The critical part of the amendment is the specification of new relationships from Institution and Advisor
to Commission Contract, which must done whether the superclass exists or not. The amendment might
mean redrawing a diagram or updating text documentation behind the scenes. It might mean altering a
specification of data items or processes, classes or operations. Whatever you do, it is likely to take
about the same amount of effort.

23.5.3 Database costs

Amendment of a specification, or a program, is one thing. Amendment of a live database structure is
another. Amendments that force a database schema change normally cost more than those that
involve only rewriting and recompiling programs.

The business entity model is a specification; it may become the structure to which business services
are coded, but neither of these means that it must become the physical database structure. Of course
the database must be designed to contain the business classes and relationships, but it may do using
a different structure.

To reduce the costs of restructuring the database, the database designer may roll subclasses into
generic database tables. Then, given the kind of software architecture described in the group papers
on <Architecture definition>:

e the user Interface layer presents specific subclasses, and
¢ the business services layer programs deal with specific subclasses, but
e the data services layer stores generic database tables.

The database designer must weigh the undeniable advantage of reducing database schema evolution
costs, against difficulty of maintaining more complex data abstraction processes, and the performance
costs below.

23.5.4 Performance costs

Implementing a generic class as a database table may damage the overall performance of a system in
several ways. It can both increase database storage requirements and slow down transaction
processing.

e Implementing a generic superclass as a database table is likely to mean the system must
generate and store an additional artificial key. This is not a trivial matter in large systems.

e System-generated keys slow down distributed datan entry tasks, because every time an

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 152

object is added to an abstract superclass, the distributed process must call one central server to
activate the component that generates an artificial key for the new object. This component
becomes a bottleneck.

e Transactions will be slower if they have to instantiate an object by joining super and subclass
tables, since this means accessing two tables instead of one table.

e Transactions can be slower if they retrieve objects of a specific subclass via a generic
relationship, because they must access many irrelevant subclass objects to find the ones they
want.

e Old-fashioned database technologies can slow multi-user access even further by locking the
whole of a superclass database table when one row is accessed.

If several distributed locations are creating objects of a single class, then how to guarantee they do not
create duplicate primary keys?

¢ Either they share one key value generator - they call into a central server when they need to
create an object.

e Or each location has its own primary key range and its own key value generator. This means
objects are location-dependent, in effect, they are members of distinct classes.

23.6 Conclusions

23.6.1 The places for generic classes

Generic classes have various roles. They can be used by analysts to prompt business people to think
about their business. They are helpful in enterprise-level models, where they are needed to suppress
detail, and prevent the enterprise model from growing impracticably large.

Guideline: where generic and specific classes both appear in an enterprise model, then it is
advisable to show the generic relationships and suppress the specific relationships.

Database designers often roll subclasses into a generic class (or rather abstract table), to reduce the
number of 'joins' and reduce the cost of database restructuring on amendment, even though highly
generic tables do tend to make database programming harder.

Generic classes tend not to be so helpful in system specification-level models where the business rules
must be made explicit rather than hidden from view. Given the goals are to specify the business rules
at a level of generalisation users can understand, and to specify the processing constraints that
designers must apply to datan entry, then it is advisable to show the specific classes.

Guideline: where both generic and specific classes both appear in a business rules model, then
it is advisable to show the specific relationships, and perhaps to suppress the generic
relationships.

Note that this discussion of generalisation has said nothing about granularity, that is the size of
components, classes and operations. Granularity is discussed in the Chapters <Aggregate entities>
and <The ubiquitous business object>.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 153

23.6.2 Rules of thumb
Finally, later chapters identify some relatively mechanical principles that help to restrict the pointless
proliferation of class hierarchies in business rules models. A superclass must:

e Dbe non-trivial, more than a common attribute or two

e have generic behavioral features (operations) not just structural features (attributes and
relationships).

Subclasses must:

e inherit ALL their superclass's features
e extend their superclass with extra features
e be mutually exclusive, not additive.

These points are explored in more detail in later chapters.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 154

24. Top-down class hierarchies

It is easy to define very high-level abstractions, and tempting to define deep class hierarchies. | believe
it is almost always a mistake.

If you abstract a generic class that business people do not naturally talk about (e.g. Party), then this
should not be regarded as a business class. It is more accurately regarded as a minor optimisation
designed by us to avoid a minor redundancy in the specification (e.g. replication of name and address
attributes in Customer and Employee classes).

Yes, a generic class can give greater adaptability to the resulting system, if carried through to design,
but at some cost. If you cannot confidently predict the benefit will be realised, then don’t pay the cost!

Guideline: Very few abstract superclasses deserve a prominent place in a business rules
model we use to code business services.

David Hay tells me his models always feature entity types that are general enough to apply to all
businesses, but are also recognizable to all (see the earlier chapter).

24.1 A conversation with David Hay

GRAHAM: | notice in your book that Party is subtyped into Person and Organization. May | point out
that until the UK tax laws changed, one-man companies were common?

DAVID: This is an interesting point. US tax law sees three kinds of businesses: corporations,
partnerships, and sole proprietorships. A sole proprietorship is a company that happens to consist of
only one person. The proprietorship is an organization and the owner is a person, with the two related
to each other.

The model could be drawn as below, where ORGANIZATION = corporation, sole proprietorships, etc.
and PARTY RELATIONSHIP TYPE = employee, owner, spouse, member etc.

PARTY <-- PERSON

PARTY <-- ORGANIZATION

PARTY (1) --< PARTY RELATIONSHIP >-- PARTY (2)
PARTY RELATIONSHIP TYPE --< PARTY RELATIONSHIP

Notations used here

TYPE <-- SUBTYPE

ONE --< MANY >-- ONE

GRAHAM: One tangible real-world person can appear in your model as two objects, one of class
PERSON and one of class ORGANISATION. | wonder, would object-oriented designers complain
about this? And it does suggest to me you are modeling roles rather than entities.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 155

DAVID: In a sense you are right, but it's a different kind of role. | don't have a problem with a person
appearing twice because | believe that the person that has attributes "birthdate", "social security
number", etc. is a different thing than the sole proprietorship that has attributes "establishment date",
"annual revenues", etc. In this case, by looking at the thing from a different perspective, you are
looking at different things.

The same might be said for "customer" and "vendor", but in this case, the role is defined not by a
different view of the thing itself but rather by the relationships the thing participates in. | can define a
"customer" as a Party that is in a "buyer of" relationship in an order. You can't define a sole
proprietorship as a person with a relationship.

OK, maybe you can, but | am going to pretend that you can't. So there! <g>

MICHAEL: | have had a lot of experience with generalisation over the last decade, starting before |
became familiar with David Hay's approach. My most recent thinking has been that you should start
with a literal business perspective, and then explain the benefits of the more generic perspective. You
make the generic perspective the new business perspective.

GRAHAM: That implies a long-term commitment to managing users and models, a commitment that is
beyond most of the environments | have worked in. My rule is - if you cannot confidently predict the
benefit will be realised, don’t pay the cost.

How much generalisation is enough? Required? Desirable? Generalisation is easily overdone. E.qg. it
takes me only a few moments to construct the hierarchy below.

Level 1 Level 2 Level 3 Level 4

Partnership

N-way Partnership

3-way Partnership

2-way Partnership

Friendship

Contract

Account

Advice Contract

Commission Contract

This deep class hierarchy looks OK, and that it what is worrying, because it is not OK. Creating a class
hierarchy to describe a world | imagine is not a profitable exercise.

The most useful classes and superclasses come not out of a software model builder's mind, but out of
business people's understanding of their business. The best superclasses and subclasses have
distinct features of interest to people running the business.

DAVID: There is a lot of bad hierarchy specification that | agree should be dispensed with. But | have
ample examples of fairly deep structures that were both meaningful and well understood by my clients.
For an oil company, | had to divide Real Spatial Element as shown below.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 156

Level 1 Level 2 Level 3 Level 4 Notes
Real Spatial
Element
Earth Volume
Linear Object
Location Point
Control Point very important to an oil company (and
anyone doing geographic enterprise
applications), because the boundary of
any piece of land is defined as a set of
points. They want to be able to define
that space.
Road
Landmark
Geographic
Area
Geopolitical
Area
Country
State
County
City
Postal Area
Management defined by organization, say marketing
Area region.
Surveyed Area as in the U.S. surveying system.
Township
Section
Range

Natural Area

Lake Boundary

Habitat

(Oil) Reservoir

Projection

GRAHAM: | understand you can build such a hierarchy. But why? And how stable is it? Challenges to

mutual exclusivity might include:

¢ lake = habitat? (house boats, houses on stilts)
e city = county? (happens in the UK)

The entity modeler

Structural model patterns and transformations
Copyright Graham Berrisford

Page 157

Version: 7
01 Jan 2005

e postal area = city?
e management area = county?

DAVID: Why do it? Because it accurately describes the world. Should the structure be implemented
with just a few tables? Probably. But in the analysis model it was extremely helpful to be able to
explore categories and sub-categories.

GRAHAM: | am sure it describes the geographical features of the problem domains your customers
have been interested in so far - at least at a general level.

DAVID: And these are fundamental classifications.

GRAHAM: | guess you mean fundamental in the sense that you don't have to change the top-levels of
the class hierarchy much when you move from problem domain to problem domain. But there will be
considerable redundancy in the classification for some customers. Few care about CONTROL POINTS
and ROAD LANDMARKS.

DAVID: It isn't that there is redundancy. It is true that some of the elements of the model are not of
interest to some clients. That's ok. They don't get included in that client's model.

GRAHAM: If nothing stops you extending your class hierarchies for new customers, then | suspect
your hypothesis about the classification's validity cannot be disproved, and is therefore not a scientific
claim.

DAVID: To the contrary. My models are a set of facts that are specifically constructed so that they can
be wrong. That is the advantage of my method of labeling relationships. It is a fact that a geographic
area is not the same thing as a point or an earth volume. They sound simplistic, but they are an
important basis for what is built on this model.

GRAHAM: Again, one real-world lake can appear in your model as two objects, one of class LAKE and
one of class HABITAT.

DAVID: The definition of a habitat is different from the definition of a lake boundary. REAL SPATIAL
RELATIONSHIP (of a REAL SPATIAL RELATIONSHIP TYPE "habitat location™) links them together.

It is a fact that a city is a kind of geopolitical area and not a management area. Denver County is one
political entity, while the City of Denver is another. The fact that they are conguent is an additional fact.

One of the amusing things about this model is that people are inclined to "hard code" the relationships
between cities and states, states and countries, etc. In the United States, you can assert specifically
that each city must be in one state (Kansas City, Kansas is a different city from Kansas City, Missouri),
and that each county must be in one state. But people who haven't travelled much want to assert that
each city must be in one county. They don't know that New York City consists of five counties and
Atlanta has something like three. So, the workhorse is REAL SPATIAL ELEMENT RELATIONSHIP.

While the boundaries of a GEOPOLITICAL AREA may change, of course, the fact that one constitutes
an occurrence of an entity type that is classified as | describe does not. A city will always be a
geopolitical area, not a management area or a natural area.

GRAHAM: Why not? The management team headed by the mayor who won the last city election will

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 158

surely define the city's geopolitical area as a management area!

DAVID: The definition of "city" is that it is a bounded area whose boundaries are defined by law, and
which has the characteristics of a municipality. It is governed by an organization for that purpose. (The
government is a different thing, by the way--an ORGANIZATION.) If Lever Brothers decides that New
York City is a "marketing area”, the boundaries of that area would be the same as the boundaries of
the City of New York. But it is a different thing. If the City is determined to be a habitat for a rare breed
of pigeon, then the boundaries of the habitat may also be the same, but a habitat is also a different
thing.

Again, the question is: what is the thing (object?) you are talking about. You allude to the right problem.
| suspect that object-oriented people are too focused on tangible things. Too much Aristotle. Not
enough Plato.

To see two different areas occupying the same space is not to describe the space redundantly. It is to
say that two different areas are intimately related to each other.

GRAHAM: Hmm... You are interested in drawing entity models to understand and explain what a
business is about. | am interested drawing entity models that work well as the database structures of
enterprise applications to support known data processing requirements.

24.2 Conclusions

I have challenged David Hay about the extent to which class hierarchies dominate his entity models.
David’s class hierarchies are surely very useful as analysis tool, but won't somebody have to transform
them into my kind of entity model before they build an enterprise application?

This modeling practice took hold of some entity modelers when object-oriented design first became the
vogue. But often, their class hierarchies were/are ill advised. And often, the hand over to design is
problematic. Some analysts never realise the entity models they draw for discussion with users have to
be rebuilt by the database designers. Anything that results in a needless structure clash between the
entity model and the database, or indeed between the object-oriented code structure and the database
seems bad news to me.

This brings me to a surprising conclusion, surprising because it is contrary to practices that are widely
employed by enterprise data architects in large IT enterprises.

Guideline: Very few deep class hierarchies deserve a prominent place in a business rules
model we use to code business services.

Abstraction by generalisation is a tool to be used with caution.

The same high-level abstractions or generic classes that are so useful to the enterprise entity
modeler and analyst, often turn out, when it comes to the detailed design of a specific system,
to be only minor optimizations of a very small part of the application to be built.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 159

24.3 Philosophical postscript: do we model entities or roles?

DAVID: In your criteria for a good class hierarchy you should add: Both the super-class and the sub-
class must be true entity types, without roles included in their definitions.

GRAHAM: Your examples tend to persuade me that you model roles all the time (how things appear to
an observer), rather than real-world things, or “true entity types” (how things are).

DAVID: In a sense you are right, but it's a different kind of role. This is a philosophical question, of
course. The entities | have in my book seem pretty solid to me.

GRAHAM: | am thinking a little like a philosopher; | find phenomenology more relevant that ontology.
But | thinking also of the sciences. In a psychology classroom, we learn the world is less solid than our
egos let us believe. (Vanity, vanity, all is vanity.) In physics, cosmology and biology classrooms we
learn that things evolve over time. Where is my grandfather's axe after my father replaced the handle
and | replaced the blade?

DAVID: We are dealing with definitions of terms here. Of course these change over long time, but in
my experience, the classifications | use are pretty solid. The issue of what constitutes an occurrence is
a different one. Although | am not sure that as modelers we can deal with that one. An occurrence is
whatever the people putting the data in say it is.

GRAHAM: Interesting class v instance thing here. You talk of the classifications being solid, but the
occurrences being a different issue. Many think the reverse: real-world objects (instances) are tangible,
but our classifications of them are fragile.

DAVID: So, you are Aristotelian and | am Platonic. To you physical things are the most real. To me the
"idea of the thing" is the most real.

GRAHAM: Well, | do believe the real world exists. But | believe there are many equally valid views of
the things in it, so there is no one “true” classification of those things. | haven't yet managed to
reconcile quantum physics with cosmology and e = mc2.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 160

25. Class hierarchies in practice

Pointers to where class hierarchies are and are not helpful.

There is a wide range of software design in which programmers find the inheritance
mechanism provided by an object-oriented programming language helps them to economise,
by reusing code.

This has encouraged software system designers to specify class hierarchies in the system
specification, looking to maximise the use of inheritance. Some system analysts have now
come to believe that they should be specifying class hierarchies wherever they can.

This chapter discusses some reasons why it is a mistake to try to impose class hierarchies on
the persistent entities in the business services layer of an enterprise application.

Modelling business-world entities is different from modelling computer-world entities. It is easy
to specify useful class hierarchies where the objects are records, transactions, windows,
menus and command buttons. It is harder to specify strict class hierarchies where the entities
represent persistent ‘real-world’ entities.

Fig. a shows our notations.

Fig. a
I will show why what appears to be a class hierarchy of persistent entities may better specified

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 161

in a different way, often as an aggregate.

I will look in turn at: crude top-down classification, disputable divisions between subclasses,
parallel rather than mutually exclusive classes, designer generalisation, and instances that
change subclass.

Two themes run through all the sections below. First, the boundary between the classes of
real-world objects or business entities becomes fuzzier the longer you look at them. Second,
longevity turns types into states.

251 Crude top-down classification

Some people have proposed using stepwise refinement to develop not program structures (as
Dijkstra proposed in 1972) but data structures. Their idea is to start with a few generic classes
like Location, Person and Resource and then develop elaborate class hierarchies beneath
them. Fig. b shows the start of this process.

Fig. b

There are many difficulties with this top-down classification approach. One is to do with how
fragile the notion of mutual exclusion is. What if a Person is both a Customer and an
Employee? | have already considered this in chapter 4 and we’ll come back to it later. | want
here to challenge the broad ‘top-down’ approach rather than discuss semantic details.

The Chain of Christmas Trees pattern

The chief database designer a project in the US, after a brief introduction to object-orientation,
led the analysis of the system by building four or five class hierarchies and connecting the top-
level super-type objects by many-to-many relationships.

Fig. c gives an idea of what was done, except that there were about a hundred sub-types in
each class hierarchy. | call this pattern the ‘Chain of Christmas Trees’. It doesn’t get you very
far in software specification. This kind of model is so general that it has very little information in
it.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 162

Fig. ¢

Where are the facts and constraints?

The specification above does not say how or why an Employee should be connected to an
Office. What if there are really two meaningful relationships: ‘works at’ and ‘works for'? Fig. d
shows you can do better by adding specifically named link entities between the specifically
named subtype objects.

Fig. d
The two cross-references in the diagram above reveal two entirely different sets of Locations
for a Person, and Persons for a Location. Once you realise this kind of analysis is necessary,
the top-down development falls apart. You have to start again with a more traditional entity
relationship modelling approach.

25.2 Disputable divisions between subclasses

In the world of mathematics, a circle and a square are different by virtue of their definition by
mathematicians. In the world of computers, a file and a record are different by virtue of their
definition by software designers. But in the natural world, things are not so sharply defined.

At least one author has claimed that class hierarchies in software design reflect the nature of
the real world. Fig. e shows a favourite example, the biologists’ hierarchical classification of
species.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 163

Fig. e
In fact, there is probably no such thing as a hierarchy in nature. The eminent biologist Richard
Dawkins has pointed out that the higher levels of this classification are artificial, a man-made
construction imposed on the fuzziness of nature.

You might hope there is certainty at the bottom level. Yet one species gradually (by tiny
incremental changes) divides into two or more species, or evolves to become another.
Obviously, the classification is transient over time. Less obviously, it follows that the edges of
the classes are uncertain at any moment in time.

Even Darwin regarded the term ‘species’ as a ‘mere useless abstraction’ and ‘arbitrarily given,
for the sake of convenience’.

A class hierarchy with uncertain boundaries between subclasses is a difficult thing to manage.
People can find it hard to assign objects to a class. People will want to revise the class
hierarchy in the light of new thinking and the discovery of new objects. Revising a class
hierarchy is made more difficult when objects must persist from one version of the class
hierarchy to the next.

25.3 Parallel rather than mutually exclusive classes

It is tempting to specify a class hierarchy where all but a very few objects are either one
subclass or another. However, if the mutual exclusion is not an absolute rule, merely a
tendency, then you will prevent the system from working properly.

Fig. f shows an example | came across in real system design. The Security class was specified
as either Stock (earning interest) or Share (attracting a dividend).

Fig. f
| soon discovered a few Securities that are both Stocks and Shares. (I might have guessed this

sooner, on finding that the business gives every Security a unigue number drawn from a single
range, rather than drawing on separate ranges of numbers for Stocks and Shares.)

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 164

Users would be irritated by a system that made them record a Security as either Stock or
Share. Some would have to enter the exceptional Securities twice. Some would fail to find all
the information they want about such a Security because it has been split into two. Some
would find that statistical reports are inaccurate.

Mutual exclusion rules that don’t last

It is tempting to specify a class hierarchy if the mutual exclusion rule holds at specification
time. However, the rule may break down; what seem to be disjoint subclasses when first
analysed become parallel aspects soon after implementation.

A business might know that all its Vehicles are either Cars or Trucks, and all its People are
either Man or Woman. But a thoughtful analyst should predict that one day the system will
have to cope with a Vehicle that has the properties of both Car and Truck, or a Person who
exhibits the properties of both Man and Woman.

Again, if you don’t drop the mutual exclusion rule, the exceptional cases will have to be
recorded twice in the system, or else processed outside the system. Fig. g shows the two data
structures redrawn as aggregates to accommodate exceptions.

Fig. g

25.4 Designer generalisation

A real-world entity can play many roles at once. A business contact can be a customer and a
supplier. A person can be a doctor and a patient.

The fact that these ‘class hierarchies’ are non-disjoint because some organisations are both
customers and suppliers, and some people are doctors and patients is not the issue here.

The point here is that many businesses, much of the time, are perfectly content to record the
distinct roles as distinct entities. The real-world entity is simply not important or valuable as a
business entity.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 165

Generalisation to track the real-world entities behind their roles

Designers sometimes create a class hierarchy in an attempt to keep track of the real-world
entities that lie behind several business entities.

Suppose Healthcare administrators want their system to avoid printing out two Christmas
cards to the same Person in the role of Patient and Doctor. The designer might specify Patient
and Doctor as subclasses of Person, thinking this will help.

In general, such requirements are difficult to meet unless the users have a business identifier
by which they can recognise instances of the real-world entity. The difficulty is that the
business deals with the roles played by real world entities, not the entities themselves.

If the users have no way of identifying the real-world entity that lies behind several roles in the
system, defining a class hierarchy is not going to be helpful. Fig. h shows you could instead
specify the real-world entity as a kind of link class, related to its roles as business entities by
associative relationships.

Fig. h

If the objects of the link class are visible to users, distinct from their roles, the link class should
be given a meaningful key, even if this is a compound of all its attributes.

Generalisation to optimise design

Designers sometimes specify a class hierarchy to avoid duplication of specification and code.
Fig. i shows an example where designers specified a class called Organisation to hold address
details and a telephone number.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 166

Fig. i
But the business deals with Customers and Suppliers, not Organisations. Users are quite
happy to record details twice for the small number of Organisations that are both Customer
and Supplier.

Indeed, users may want to record different addresses and telephone numbers for each role.
They may even want to record several addresses for a Customer or a Supplier.

Where design optimisation is the motivation, you might respecify the superclass as a link class,
related to the business entities by associative relationships.

25.5 Instances that change subclass

Persistent objects can hang around for a long time. In many of the class hierarchies people try
to impose on the real-world, an object instance may change from one subclass to another. Fig.
j shows two mistakes | have come across in real system design.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 167

Fig. j
You might put the model right by specifying the superclass as a master, related to ‘period of
time’ as a detail, and then subdivide ‘period of time’ into the different classes.

However, in practice, this is one of many cases where the subtyping is better specified as a
cycle of states within a class than in the entity model. State machines are a better specification
vehicle than entity models for capturing business rules of this kind. See chapter 8 for further
discussion.

25.6 Where class hierarchies are useful

Class hierarchy are most useful where the hierarchy:
« is firm not fuzzy, has strictly disjoint subclasses
* persists as a definition as long as the lives of objects it defines.

Where in enterprise applications are these true? Fig. k is a picture that divides an enterprise
application into three layers and helps us to show where class hierarchies are most useful.

Fig. k
Generally speaking, it is easier and safer to define class hierarchies of computer-world objects
than of business entities. So class hierarchies are more useful in the technological layers of

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 168

design than in the business services layer of the three-tier architecture.

This is not a popular view with those object-oriented designers who want to prove the value of
inheritance in the business services layer. But it is a fact of life.

Computer-world objects in the Ul and data services layers

When you are constructing Ul layer components, you have the power to order and classify
them as you like.

Fig. |

To a lesser extent the same is true of the data services layer. It might make sense to look for
inheritance trees in the data services layer or the Data abstraction layer. (You can restructure
the classes in the data services layer whenever you like, if you can bear the costs of data
migration.)

Transient event classes in the business services layer

Since class hierarchies are much more common where the objects are short-lived, they are
more likely to be found among transient event classes than persistent object classes.

Robinson and Berrisford (1994) suggested that in enterprise application development you can
normally make greater reuse of superevents (transient business objects) than superentities
(persistent business objects).

Model transformation for schema integration

Schema integration is a one-off exercise. If you plan to merge two schemas, you do need to
make the current rules (terms, facts and constraints) fully explicit. You can be confident that
the range of a type, the instances of a class, the rules of the business, will not change while
you are working. You might well convert any range of subtypes into a class hierarchy, just for
the purpose of comparing schemas, as discussed in the volume ‘Introduction to rules and
patterns’.

Data item definition

A class hierarchy may be used as a device for structuring the contents of a data dictionary,
where all that is required is to allocate the various data items as attributes of entities. Fig. m
arranges the data items involved in a hospital system using the notion of a class hierarchy.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 169

Fig.6m

This model is not good enough for building an enterprise application, since the relationships
between entities are specified incorrectly. For system design, the model must be redrawn after
considering:

* a person may be both a doctor and a patient

+ a doctor may swap between working in a hospital and family practice
* a person can be a patient on many occasions.
Specifying the classes in the form of a class hierarchy fails to capture any of these rules.

It is much better to specify the ‘subclasses’ as ‘parallel aspects’ connected to a ‘basic aspect’
by associative relationships. Not only will this reduce schema evolution problems if the system
ever has to record the history of a person over time, it is a more accurate specification of the
real world even if this day never arrives.

Generic domain classes

As soon as a type of information is identified as generally reusable in lots of businesses,
technology vendors can make a profit by selling it to business system developers.

There is some scope for defining class hierarchies among universal domain classes such as
text, number and date.

It is hard to imagine how a business can gain a competitive advantage by focusing its efforts
on specifying hierarchies of classes that it shares with other businesses. Technology vendors
can supply generic class definitions. Packages should take over here. System developers will
always be left to define the business-specific classes, the ones that cannot be reused so
widely.

Generic business entities?

While class hierarchies are useful specifying transient objects in the more technology-bound
layers of the three-tier software architecture, it is hard to find useful class hierarchies where the
objects represent persistent external real-world entities,

If you have a large business information database that has more than a small class hierarchy
in a corner of it - please show it to us.

The only convincing examples | have seen to date are drawn from financial systems. The

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 170

superclasses are things like Account, Transaction and Deal. These are frequently presented in
books and talks.

These are highly generic entities - not specific to one business. They are also highly abstract -
not as nearly as concrete as classes like Employee, Building, Ship and Engine.

25.7 Summary

Modelling real-world objects is different from modelling computer-world objects. It is easy to
specify useful class hierarchies where the objects are computer-world entities such as records,
transactions, windows and command buttons. But | am convinced that class hierarchies are of
very limited value in the business services layer of database transaction processing systems.

Grady Booch has said to us ‘It is a mistake to search too aggressively for class hierarchies and
inheritance in the entity model of a business. Sometimes its there and it pops out at you. More
often there aren’t many class hierarchies to be found. Many things that look like mutually-
exclusive subclasses turn out to be what you call parallel aspects. Where you do define a
superclass, it must have common behaviour as well as common data attributes.’

It turns out that in specifying the essential processing requirements and constraints in the
business services layer of an enterprise application, more reuse can be achieved in other ways

There is more reuse to be found by associative relationships than by inheritance relationships.
To discover and specify this kind of reuse, object-oriented analysts need to think in terms of
parallel aspects rather than class hierarchies of mutually exclusive subclasses.

There is also more reuse to be found between transient events than between persistent
objects. Transient event class hierarchies are more useful than persistent object class
hierarchies. To discover and specify event class hierarchies, object-oriented analysts need to
add an event-oriented perspective to their existing object-oriented perspective.

In short

object-oriented technologies that support inheritance do help designers working in the
technology-bound Ul and data services layers, but the same principles do not provide analysts
with the ‘leap forward’ that people have hoped for in the business services layer.

The persistence of objects and the fuzziness of the real-world makes it harder to specify strict class
hierarchies where the objects are models of external real-world entities. More reuse can be achieved in
other ways. object-oriented theorists need to take these other ways on board. A complete object-
oriented systems development approach must help us to recognise and model the events as well as
the objects.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 171

26. Interpreting polymorphism as event effects

Polymorphism is a powerful programming tool; but it is easy to cheat, to create an abstract
class where there isn’t a natural class hierarchy.

‘uncontrolled polymorphism would be incompatible with the concept of type’. Meyer (1988)
says

It is possible that some object-oriented designers apply the ideas of type and polymorphism
outside of the proper context, because they lack the concept of an event. We need a design
method and a language for talking about events as well as objects. A helpful definition is:

An event is a minimum unit of consistent change to a system, a set of effects on one or more
objects which must succeed or fail as a whole.

Given this definition, an event may affect several different objects of different classes. Itis a
good idea to record all these effects in an event model (object interaction diagram or use case)
for the event.

When type should be state

The State design pattern might be used to make the effects of one event look like a
polymorphic method. Say the Death event has different effects on a Person depending on
whether the Person is employed or not. The designer might describe these as polymorphic
methods depending on the type of an object. To the analyst they are optional effects of an
event, depending on the state of the object.

When type should be role

Say the Death event has different effects on the Person (dead) and the Employer. Again, these
effects are not best described as polymorphic methods depending on the type of an object.
They are effects of an event on objects of one class playing concurrent roles with the respect
to the event, depending on the identity of the object.

When abstract class should be event manager

An event model implies a weak kind of polymorphism. You can (we may say should) name all
the methods in an event model after the event that fires them. The methods share the same
name, but not the same effect, and not necessarily the same interface. In some cases you may
be able to define a common interface for all methods fired by an event, perhaps:

input: event name and parameters
output: OK or Error code.

You might then create an abstract class for the event type, which is a supertype of all the
classes that appear in the event model. Designers do indeed define such event classes in
processing transient objects in the Ul layer. But processing objects in the business services
and database layers is different.

Classes of transient events appear in enterprise applications in the guise of ‘event managers’.
An event manager is a transient process that handles one event instance. It is a convenient
home for things like transaction management and error handling. However, analysts do not
normally include event managers in the entity model that specifies the data structure of

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 172

persistent objects.

We need a richer theory, one that accommodates type and state, objects and events,
inheritance and polymorphism one the one hand, event managers and multiple event effects
on the other.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 173

27. PART FIVE: AGGREGATE ENTITIES

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 174

28. Aggregate/components entities/classes

Abstract

“Aggregation and Composition are one of my biggest bete noirs” page 80 of ‘UML Distilled’ Martin
Fowler.

Should we specify a coarse-grained entity/class such that it contains several finer-grained
entities/classes? Or specify only the finer-grained entities/classes? (Leaving composition to be done by
processes when needed).

Should we specify an entity/class to have a multi-valued attribute? Or specify classes to have only
single-valued attributes?

These are questions over which object-oriented designers and entity modelers might come to blows.

I have corresponded with an object-oriented guru, James Rumbaugh, about aggregate entities and the
related issue of multi-valued attributes.

Some of our correspondence is included in the paper below. It tends to the conclusion that aggregation
is used to optimise a physical design, but adds little or nothing to a purely analytical business rule
model.

28.1 Data structures in enterprise application software development

Enterprise applications typically maintain a persistent data structure, which is describable as a set of
related entities. E.g.

Customer ---< Order ---< Order ltem >---- Product

Enterprise applications typically consume and produce input/output flows that are aggregate data
structures.

A use case/session is usually supported or enabled by a particular data structure displayed at the user
interface. E.qg.

1. Inthe "order capture™ use case, the customer enters or views an Order-topped data
structure: Order ---< Order Item.

2. In the "study product demand" use case, the product manager views a Product-topped
data structure: Product ---< Order Item.

The Model-View-Controller design pattern is used by OO programmers to structure the software that
supports a use case/session:

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 175

The Views represent the HTML pages displayed during the session.

The Controller handles the events and enquiries entered during the session, which either update data
in the Model or fetch data to populate a View.

The Model is the data structure relevant to that session. E.qg.

1. In Model 1, the Order Item appears as an element in an Order aggregate data structure.
2. In Model 2, the Order Item appears as an element in a Product aggregate data structure.

A user interface naturally represents an 1/O data flow in a hierarchy and sequence that aggregates
elements in one direction rather than another.

This paper is about whether the underlying Business Model should aggregate the Order Items in any
particular direction.

28.2 Aggregate entities
Specifying a business rules model involves a certain amount of unavoidable work.

If your model is detailed down to the level of fine-grained normalised entities, then all one-to-many
relationships are made explicit in the structure.

If not, then these relationships must still be documented, not in the entity model diagram, but behind it.

People seem to prefer abstracting from a fully normalised entity model, to specify coarse-grained
classes.

Some simply want suppress detail from the diagram, perhaps to facilitate discussion with users.

Others are looking to define fewer, coarser-grained classes for the purpose of defining fewer, coarser-
grained operations.

How is this done?

In practice, the grouping of entities into aggregate entities is normally done in one of the following two
ways.

28.2.1 Aggregation based on kernel entities

A kernel entity is one with a simple primary key recognised by users (say Order).

A characteristic entity is one whose existence depends on a kernel entity (say Order Item).

You can define an aggregate entity (also called Order) composed of the kernel entity with its
characteristic entities

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 176

Any entity who existence depends on the existence of a kernel entity, might grouped into an aggregate
with the kernel.

Typically, a dependent class can be recognised by the fact that its primary key is an extension of the
kernel entity's key.

For example, in this model:
Customer ---< Order ---< Order Item >---- Product
Order ---< Payment

Suppose the primary keys of the Order Item and Payment classes are formed by extending the Order
Number with a further identifier.

Then you might define an aggregate composed of Order, Order Item and Payment.

Coarser-grained classes mean coarser-grained operations.

28.2.2 Aggregation based on aggregation/composition relationships
UML includes aggregation and composition relations, which may be drawn between two classes
Aggregation connects a component class to the class that “contains” it in some sense.

Aggregation is a vague concept that can be given more substance by thinking of the associated
objects’ state machines.

Do the associated objects share the same lifetime? even the same state transition diagram?

“An aggregation relationship implies that the object and its owner have the same lifetimes” Gamma etc.
Design Patterns' Prentice Hall 1995

Consider two classes — parent and child — in which the identity of the child entity is constructed by
extending the identity of the parent entity.

e The parent entity - Order - has the primary key Order Number.
e The child entity - Order Item - has the primary key Order Number + Item Number.

Are these two classes? Or one aggregate class that contains the other?
James Rumbaugh: “In this case | would treat them as separate objects.

You want to manipulate them separately and treat the order item as something you can change, with
the changes reflected to the order.”

Graham: One might ask: Do you ever invoke an operation on a child object without invoking an
operation on its parent?

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 177

If yes, then they are better specified as two distinct classes.

E.g. Do you ever enquire on, update or delete an Order Item without accessing its Order?
If yes, it is better to specify Order Item as a distinct class.

Composition is a tighter form of aggregation.

James: Note the concept of "composition” that we have added to the UML.

“A composition is a strong aggregation in which the composite is the sole owner of the part and is
responsible for its creation and destruction.

The part cannot exceed the lifetime of the composite.” James Rumbaugh 1998
Graham: Is the concept of composition helpful here?
Does it add much to the relational database principle of referential integrity between child and parent.

The principle that the ‘child cannot exceed the lifetime of the parent’ applies to any child-parent
association where

e the child’s primary key includes the parent’s key, or
¢ the relationship is mandatory and fixed at the child end.

James: “I'm not sure you can distinguish composition and association so well in the real world, or in an
analysis model.

But at the design level | think it is clear.
The composite has responsibility, and sole responsibility, for the memory management of the part.

There will be no conflict over the reference and no danger of dangling pointers if the owner deletes
one.

It is a guarantee that there will be no garbage collection problems.

Therefore physical embedding is composition, because the part is allocated and de-allocated with the
whole.

But you can use a pointer to memory off the heap, but it may not become independent.

That is the meaning of composition in a practical sense: it doesn't matter if the part is physically part of
the whole or stored in a separate block, it is handled the same way.”

Graham: In any case, the UML definition of composition isn’t applicable to this case study.

Because Order Item is owned not only by Order but also by Product, it is a cross-reference between
them.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 178

An Order Item cannot exceed the lifetime of its owner Order, but nor can it exceed the lifetime of its
owner Product.

(Nor any other fixed mandatory parent, including indirect parents such as the Customer who placed the
Order).

There is one more analysis question to be asked of the case study example.
Can an Order include two Order Items for the same Product?

If not, then you might do better to redefine the primary key of the Order Item as a compound of Order
Number and Product Type.

And so prevent several items on one Order from requesting the same Product.

28.2.3 The weakness of the aggregation concept

Martin Fowler again: “Aggregation is easy to explain glibly.

The trouble is, there is no single accepted definition of the difference between aggregation and
association.

In fact, very few [methodologists] use any kind of formal definition.”

The aggregation concept seems natural where object-oriented programming was first successful, that
is, in the handling of graphical user interface objects.

Consider a dialogue box that can be moved across the screen.

All the objects (buttons, fields, whatever) within that dialogue box have no existence before, after or
outside the box, and must move with it.

There are three reasons why aggregation relationships between business information classes far less
natural.

1) There is a scale of associations from weak to strong

“Aggregation and acquaintance relationships are easily confused” Gamma et al. ‘Design Patterns'
Prentice Hall 1995

It is easy to waste time arguing about the distinction.
It seems better to regard association relationships as being placeable on a sliding scale from tight
aggregation relationships to loose acquaintance relationships, without any firm dividing line between

them.

2) Aggregation and association relationships are normally implemented the same way

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 179

They cannot be distinguished in the compile-time structure or the implementation language.

Martin Fowler again “The cascade delete is often considered to be a defining part of aggregation, but is
[clearly applicable to structures that are not aggregations].”

3) Persistence undermines aggregation.
Time destroys compositions.

Time reveals apparently strong aggregation relationships to be weak associations or acquaintance
relationships.

Events break up aggregates (the Soviet Union, Yugoslavia and the United Kingdom come to mind).
In short, aggregation is a fragile concept.

Aggregation relationships seem natural in a static unchanging data structure, in a short-lived data
structure, in a transient input/output view (like a graphical data structure perhaps).

But where entities persist and change over time, the concept of aggregation, composition or
containment is a weak one.

28.3 Multi-valued attributes

There is a debate about whether an attribute can have plural values.

According to most people’s interpretation of relational theory, an attribute that is plural (e. g. Telephone
Numbers) ought to be specified as an independent class of objects.

Applying this ‘first normal form’ principle sometimes leads to a different model from object-oriented
design, which allows what might be called an aggregate entity that contains multi-valued attributes.

Customer entity: attribute list

Customer Number

Name

Country

Telephone Number

Telephone Number

Telephone Number

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 180

James: | wouldn’t rule out attributes with plural multiplicity, in the situation that the set of values has no
independent identity.

Graham: Asking about uniqueness constraints might help.

Do users care enough to prevent an attribute value appearing twice in the list? If they don’t care, then
the multi-valued attribute is reasonable.

If they do care, this implies that each attribute value uniquely identifies something (a telephone), and
suggests you should normalise it to become a distinct class.

James: | might put it differently.

If the reference is to a telephone as an object, you could change the number and all of the users of the
telephone would see the new number.

If it is just a string in each list, then it has no identity.
Graham: There is also a more practical design question. How long is a list of attributes?

A database designer might not like either a long fixed-length list (empty in most cases) or a variable
length list.

James: As an implementation issue you would likely make it (Telephone) a class, but that's not the
modeling issue.

Graham: Strictly, the designer or implementer’s decision should not influence the builder of the
business rules model.

But it is often tempting to align the entity model with the database model.

And in the case of multi-valued attributes, it normally seems convenient and harmless to do so.

28.4 Conclusions

It is easy to draw an aggregate entity box around a parent entity and some or all of its children.

But does such composition actually help?

28.4.1 Composition in the Ul layer
User interface designers find composition useful.

A window or dialogue box can be regarded as an aggregate entity.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 181

The user may trigger operations that act on the whole aggregation, rather than elements of it.

28.4.2 Composition in the data layer
Database designers find composition useful.

Group entities into an aggregate entity may imply the clustering of tables into a ‘block’, so as to speed
up processes that access data from closely related entities.

28.4.3 Composition in the business layer

Composition does seem a good way to document the relatively uncommon situation where a class has
multi-valued attributes.

Such as the list of telephone numbers illustrated earlier.

And composition might also be used in circumstances constrained by the following two rules.
Include only single-parent characteristic entities with the parent in the aggregate entity.
A single-parent characteristic entity is a child that has no relationship other than to its parent.

Do not include any characteristic entity upon which operations can be invoked separately from
the parent entity (which implies there is a distinct identifier for the characteristic entity).

But many people are insensitive to these constraints.
They often include link entities, and sometimes even parent entities, in aggregate entities.

They may do this for many reasons, but their reasons are always to do with design rather than
analysis.

There is a limit to how much | can conclude from an email correspondence.

But | have the impression that James Rumbaugh also regards most composite classes as artefacts of
physical design rather than analysis.

The business rules model is not supposed to be influenced by the design decisions of user interface
designers and database designers.

There are only a very few cases where the concept of an aggregate entity seems helpful in a business
rule model.

Beyond these cases, specifying composite classes in a business rules model seems inappropriate and
unhelpful.

It forces the analyst to make a design decision that need not be made, a decision that often has to be

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 182

undone later.

28.4.4 Composition to suppress detail

Some people need to suppress detail from the entity model diagram, perhaps to facilitate discussion
with users.

This is a harmless enough idea.

If the aim is merely to draw a higher-level of entity model that suppresses detail from the full one, then
a simple procedure will do the job:

Examine every entity that has only one relationship.
If this entity is not of primary importance to the users, then hide it inside its neighbouring entity.
Examine every many-to-many link entity.

If this entity has no attributes or operations of its own, then draw the entity as a relationship line rather
than a box.

28.4.5 Composition for CBD, microservices or micro apps

Some people are looking to define fewer, coarse-grained classes for the purpose of defining fewer,
coarse-grained operations.

However, composite classes or aggregate entities are simply too small for component-based
development.

This is the reason why people complain that the granularity of object-oriented design is too small.
The practical way forward is to move towards a component-based development approach where many
classes are grouped into a coarse-grained business component, and operations are defined at the

level of the business component.

The component-level operations, or business services, correspond to what most pre-object-oriented
methods called transactions.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 183

29. PART SIX: DEEPER THOUGHTS ABOUT ENTITY
MODELS

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 184

30. Five kinds of entity model

What is a class? What does a box in an entity model represent? Should either subclasses or
parallel aspects of a class be specified as distinct classes? You can’t have it all ways in one
entity model.

This chapter shows five kinds of entity model. A methodology or technology can accommodate
clashing views of what a class is, by allowing several versions data structures to coexist, each
entity model being directed at a different purpose.

301 The inevitability of structure clashes

Booch (1994) probably speaks for most computer scientists when he says ‘mapping an object-
oriented view of the world onto a relational one is conceptually straightforward, although in
practice it involves a lot of tedious details’. We cannot deny the ‘tedious details’, which means
that even trivial examples of enterprise applications take up a lot of space, but this chapter
offers a challenge to the ‘conceptually straightforward’.

Although the individual data items of system specification are very important, we are more
troubled in enterprise applications by how to specify the rules and constraints governing larger
objects, higher-level relations or aggregates of data items. Aggregation becomes an issue.

Whereas inheritance implies the generalisation of mutually exclusive subclasses into a higher-
level class that may be smaller than its subclasses, aggregation implies the summation of
parts into a higher-level class that must be larger than its parts.

There are clashing views of how to aggregate properties to form an object class. Different
ways to group data items into classes lead to different entity models, that is different structures
specified over the top of the data items. We need to understand the different possible views
and their implications.

A 3-tier software architecture can reconcile various views by handling each view in a separate
layer. Fig. 5a gives a rough idea of what we mean. The chapter will explain.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 185

Fig. 5a

30.1.1 Structure clashes

Aggregation is the means by which simple elementary components are added together to form
larger and more complex structures. You can build one set of elementary components into an
infinite number of different, clashing, higher-level structures.

For example, a school geography book presents several maps of the same area, showing
different divisions of the earth’s surface into:

* land masses bounded by oceans
* countries bounded by political administration
« territories bounded by climate or vegetation.

It would be foolish to say that any one of these is the ‘right’ view. And there are further clashing
aggregations of people: by race, religion and native language. Fig. 5b shows part of the world
where aggregations have been disputed for thousands of years.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 186

Fig. 5b

The ‘correct’ aggregation of components in this example has long been a matter of dispute.
Land borders have been redrawn several times. Peoples have moved en masse between
Scotland and Ireland (and from both to the USA). Eire, the ‘Irish Free State’, separated from
the United Kingdom as recently as 1921.

Components in this example are members of higher-level aggregations, Europe, NATO, the
United Nations, and so on. There are further structure clashes between these higher-level
aggregations. Again, it would be foolish to say that any one view is ‘right’.

302 Classes as elementary data types

Starting at the bottom level of system specification, the atomic particles are the data items or
variables. Each variable has a data type that defines its valid range of values. The volume
‘Introduction to Rules and Patterns’ showed how you may declare the data type as what may
be called domain class.

Generic domain classes such as Text and Integer are widely reusable. You may define more
application-specific domain classes such as Telephone Area Code and Country Name for
reuse in a local context.

Where several variables (say, Price and Telephone Area Code) share the same domain (say
Integer), the variables are subclasses that inherit the properties of the one domain. You can
arrange domain classes themselves into a complex inheritance tree.

Early object-oriented authors such as Meyer (1988) were much concerned with designing
production software operating at the level of domains. They sought reuse of code via
inheritance between domain classes. Some wanted object-oriented to provide a once-and-for-
all inheritance tree of domain classes, and so save them from have code from scratch each
new programming language, operating system and CASE tool.

But for enterprise application specification a simple two-level structure of domain classes is

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 187

usually enough: generic domain class (say, text) and application-specific domain (say Country
Name). In practice, Analysts spend little time on specifying domains. They spend most of their
time thinking about the rules operating on larger relations, each an aggregates of variables
about a business entity.

Specification of classes at the level of relations is different from specification of classes at the
level of domains. Among database-oriented authors, Chris Date (1994) makes the remarkable
statement: ‘Object classes are domains or data types. Questions about inheritance therefore
apply to domains, not to relations.’ Is this true? What is a class anyway?

30.3 Classes as aggregations

To make an aggregate, you simply add components together. There are an infinite variety of
way to group data items into aggregate classes. It is hard to make any general statement
about what an aggregate class is, until we separate the three layers of the three-tier
architecture.

Layer Objects like In domain of

ul menus, windows, buttons etc. user interface technology
Business services business entities and rules business users

Data services tables, records, indexes, etc. database technology

This three-way separation of concerns recurs throughout our work in information analysis. It
helps us to separate different kinds of problem, and retain this separation from analysis and
specification through to coding. It enables us to change the data storage or Ul layer with
minimal disruption to the essential business components.

30.3.1 Classes in the data storage structure

Aggregate classes appear in the form of persistent database tables or record types. Database
programs treat each table as a distinct object. Some database management software expects
you to specify larger aggregate classes such as database blocks or pages.

The size and scope of each aggregate class in the Data services layer is physical. It is guided
by considerations of efficiency and limited by the database technology. Each internal class
may roll up data from several entity classes, or store only part of one entity class.

30.3.2 Classes in the Ul layer

Aggregate classes appear in the form of transient input messages, output messages, windows
and dialogue boxes. The GUI management software will treat the data structure in a window
as a single object when, for example, it moves it around the screen.

The size and scope of each aggregate class in the Ul layer is physical. It is guided by
considerations of usability and limited by the user interface technology. Each Ul layer class
may roll up data from several entity classes, or display only part of one entity class.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 188

30.3.3 Classes in the business services layer

The Business services layer includes both persistent aggregate classes (objects) and transient
aggregate classes (events and enquiries).

Events and enquiries are naturally limited in size and scope by the rule that a transient event is
a minimum unit of consistent change. But what rules limit the size and scope of the persistent
object classes? In other words: How should you group the persistent variables into aggregate
classes in the entity model?

The size and scope of each aggregate class in the business services layer has nothing to do
with technology, or physical objects such as database tables or GUI windows, it is a matter of
logic.

Three logical views
You might define a class as an aggregate of variables around three different centres:

aggregate centred on means the class is

a key a third normal form relation

a type a type within a class hierarchy

a state variable a state machine (or ‘parallel aspect’ of a relation)

So far, authors have tended to gloss over the possibility of structure clashes between these
different views of a class. In trivial examples, where there is no structure clash, the different
definitions lead to the same set of classes. You will draw the same data structure whichever
definition you pick.

But for non-trivial enterprise applications, we can no longer pretend that the different definitions
give the same answer. The more complex the system, the more the logical views diverge from
each other. The data pictures you draw will depend on the definition you pick.

There are clashes between logical views of a class, and then between logical and physical
classes. You may design the physical database tables and GUI windows to match either the
relations or the state machine, but you can’t match both. We need a richer theory of system
specification, a software architecture that results in separates components handling each
logical and physical view.

30.4 A more formal view of entity models

Entity model notation is not the issue here. The notation we use is only one of several possible
notations. The same questions and choices arise whatever notation you use.

Different ways to group variables into classes lead to different entity models, that is different
structures specified over the top of the variables. Analysts often draw entity models that are
mixture of different styles without realising it. They should understand the different possible

approaches and their implications.

30.4.1 The informal entity model

At the earliest stage of system specification, you should be free to draw any informal picture
that helps you. For the sake of giving this kind of data structure a name, we’ll call it an ‘informal

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 189

entity model’. This is an informal picture of the data in which an ‘entity’ is whatever level or size
of data group you want it to be.

30.4.2 The relational entity model

Given an enterprise application consumes data and produces information, you may uncover
the classes of interest by relational data analysis of the data in forms, reports, screens and
files. The result of such analysis is a relational entity model.

Fig. 5¢

An early step in relational data analysis is to spot the business identifiers or keys. Given an
object, the value of each of its attributes is uniquely determined by the value of its key. In what
is called a ‘third normal form’ relation, the value of each attribute is determined by first the key,
second the whole key, and third nothing but the key.

In the example above, each box is a relation, its key is underlined, its attributes are listed, and
its associations to other relations are shown as lines connecting the boxes. The meaning of the
different styles of line doesn’t matter here.

There is little freedom of choice about what the relations are, given that you know the users’
information requirements and you follow the idea that object instances are uniquely identifiable
from each other by a key. But this is not the only logical view.

30.4.3 The entity state machine model

Another common logical view is that an object is something that progresses through a defined
series of states, from a beginning to an end. In this state-transition view, a class is a state
machine or behaviour, governed by a state variable (SV in the illustrations below).

People who design systems with little or no persistent data, typically embedded or process
control systems, often view classes as state machines. They discover the classes by analysing
states that classes pass through and the events that trigger state-changes.

You can use similar techniques for enterprise applications. You can transform a relational

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 190

entity model via behaviour analysis technigues into a specification of event models that
maintain the data. These event models include the required rules in the form of preconditions.
It turns out that behaviour analysis may lead you to decompose a relation into parallel aspects.
In the event models, each parallel aspect of a relation appears as a distinct class.

People often assume you can draw one state machine for each relation. However, you need to
draw separate state machine for the parallel aspects of a relation.

Fig. 5d shows the entity model with one box per state machine. This differs from the relational
view in that parallel aspects of a relation have been divided.

Fig. 5d

There is little freedom of choice about what the classes are, given that you know the rules and
constraints and follow the idea that each class is a state machine controlled by one state
variable (or none if it can be optimised away). Note that the behaviour analysis shows that
most of the classes in this example have one-state lives, and so require no state-variable.

See the footnotes for some remarks on classes as state machines.

30.4.4 The data storage structure

Given a system that maintains persistent data, you must design the record types or tables into
which the database will be divided. The physical database designer’s view is that a class is a
record type or database table, that is the unit of input/output accessed by programs.

Database designers usually transform a relational entity model first into a data storage
structure (technology-independent) and then into a physical database structure (technology-
dependent). The data storage structure records decisions about the physical database
structure, with one box for each table or record type.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 191

There is much freedom of choice here. You might map logical to physical by designing a
separate table for each relation, or each subclass in a class hierarchy, or each state machine.
In complex systems you cannot do all of these at once.

Fig. 5e avoids the structure clash between different logical views by rolling up the logical
subclasses and parallel aspects of Vehicle into one table.

Fig. 5el

30.4.5 Object-oriented purist’s entity model

There is one more logical view, considered in the next section. The inheritance-oriented view is
that a class is something uniquely identifiable by a type or subclass. In our example, a Vehicle
may be either a Car or a Truck. Should we show the subclasses as distinct classes in an entity
model?

So by way of summary, you can distinguish four or five different ways to define what a class is,
and so draw different data structures:

Kind of entity model The entity or class is

The informal entity model whatever data group you like
The relational entity model a normalised relation

The entity state machine model a state machine

The data storage structure a database table or record
Object-oriented purist’s entity model a type in a type hierarchy

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 192

The main point of this chapter is that all five of these views are reasonable and useful. What
we need is an architecture that enables us to consider each view during analysis, and maintain
clashing views separately in the modular construction of our software.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 193

31. Subclasses and parallel aspects

This and the following sections detail variations in ways to draw entity models where a class
might be divided into subclasses or into parallel aspects.

e For subclasses the options are called: aggregation, pseudo-inheritance and delegation
e For parallel aspects, the options are called: aggregation, partition and delegation.

31.1 Subclasses

Given a class hierarchy containing a superclass (say Vehicle) with two subclasses (say Car
and Truck), people have proposed three different ways to specify the subclasses: aggregation,
pseudo-inheritance and delegation.

31.1.1 Aggregation of subclasses into one class

This means specifying the entire class hierarchy as one class. You may draw an exclusion arc
across relationships specific to different subclasses.

Fig. 5f

31.1.2 Pseudo-inheritance of super class into subclasses

This means specifying only the subclasses as classes, copying the properties of the
superclass into each of them.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 194

Fig. 59
The pseudo-inheritance approach means repeating data specification (above, the relationships
to Owner and Model) in an anti-reuse, anti-maintenance, kind of way. Nevertheless, at the
expense of some duplication, a handy rule-of-thumb is to do this if the users employ a different
range of identifiers for each subclass.

Since we have assumed that all kinds of Vehicle are identified by the same primary key, Reg
Num, we would not divide in this example. By the way, if we did divide, then any process given
only Reg Num as input data must perform a preliminary enquiry to find out which subclass to
access.

31.1.3 Delegation of subclasses as detail classes of a master class

This means specifying the superclass and each subclass as distinct classes, connected by ‘is
a’ relationships. In this entity model the boxes are things that are uniquely identifiable one from
another by a combination of key and ‘type’.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 195

Fig. 5h
Representing the subclasses of a class

Given four kinds of entity model and three ways to specify a class hierarchy as classes
(aggregation, pseudo-inheritance and delegation), which way suits which kind?

Drawing class hierarchies in an informal entity model

Since the informal entity model is only an informal picture, it doesn’t matter which way you
choose to draw it. However, delegation is common. People like to draw the subclasses as
distinct boxes in an informal entity model because it helps them analyse the problem domain,
even if they later decide to aggregate the subclasses, or use pseudo-inheritance.

Drawing class hierarchies in a relational entity model

Rule-of-thumb: if the users recognise objects of two subclasses by the same primary key use
aggregation; if not use pseudo-inheritance. We aggregate in our example, because all kinds of
Vehicle are identified by the same primary key, Reg Num.

Drawing class hierarchies in an entity state machine model

The structure clash between subclasses and parallel aspects needs further exploration. The
difficulty is outlined here.

Before you can draw a box in an entity model for each state machine, you have to understand
the right way to build state machines. You must somehow document the constraint that the
state machines of the subclasses are mutually exclusive. The way to do this is by drawing a
high-level selection between options, where each option represents a subclass.

Aggregation is wrong. It means drawing only one state machine for the class hierarchy,
including the behaviour of all subclasses in it, duplicating the superclass behaviour under each
subclass option.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 196

Pseudo-inheritance is wrong. It means drawing state machines only for the subclasses,
duplicating the behaviour of the superclass in each. This means there is no specification in the
state machines of the mutual exclusion between subclasses. You must prefix some events by
an enquiry to work out which class they affect. Given an event (Scrap Vehicle) that carries only
the primary key of the object (not its subclass) there is no way of knowing to which class the
event must be directed. The corollary is you cannot rely on generating all the event
preconditions from the state machine documentation.

Drawing class hierarchies in a data storage structure

Aggregation of subclasses into one relation is normal. The subclass’s data attributes are
contenders for the same data storage space. Aggregation also sits happily with the view taken
in behaviour analysis.

312 Parallel aspects

A parallel aspect of a class (or as some object-oriented authors say ‘non-disjoint subclass’) is
an independent group of attributes and relationships, whose behaviour is governed by a single
state variable.

Behaviour analysis (and structure clash resolution) tends to lead you to divide an aggregate
relation into its component parallel aspects. You may go as far as to decompose the behaviour
of a relation into one parallel state machine for each attribute and relationship. However, a
group of attributes and relationships that share the same state-transitions are normally lumped
together in one state machine, making it a very low-level aggregate class.

31.2.1 Aggregation of parallel aspects into one class

Since aggregation rolls up all parallel aspects into one class, the picture of the case study here
would be the same as that for aggregation of a class hierarchy shown earlier.

31.2.2 Partition of parallel aspects into several classes

The picture here is different from partition of a class hierarchy shown earlier. There is a
structure clash between subclasses and parallel aspects. Dividing parallel aspects leads to this
entity model.

The entity modeler

Structural model patterns and transformations Version: 7
Copyright Graham Berrisford 01 Jan 2005

Page 197

Fig. 5i

31.2.3 Delegation of parallel aspects as detail classes of a master class

There is only a subtle difference between delegation and partition of parallel aspects.

In delegation, one of the parallel aspects is appointed as the ‘basic aspect’. E.g. the basic
aspects in the example are Owner-basic and Vehicle-general. The ‘basic’ aspect can be
thought as being at a higher level and owning all the others. This means we can connect all
the other aspects to the basic aspect by association relationships.

31.2.4 Representing the parallel aspects of a class

Given four kinds of entity model (informal, relational, application and data storage) and three
ways to specify parallel aspects as classes (aggregation, partition and delegation), which way
suits which kind?

Drawing parallel aspects in an informal entity model

Aggregation is normal. People rarely draw one box for each parallel aspect in drawing an
informal entity model. As far as code specification is concerned, it doesn’t matter which way
you choose to draw the informal entity model.

Drawing parallel aspects in a relational entity model

Adggregation is normal. Relational theory doesn’t really account for parallel aspects, but one
might say it assumes aggregation of parallel aspects into one relation.

Drawing parallel aspects in an entity state machine model

Partition seems the natural thing, since each box is supported by a distinct state machine. It
enables The entity state machine model to be used as a map or graphical menu for navigating
to the state machines.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 198

Strictly, delegation is the right approach. One of the parallel aspects must be appointed as the
‘basic’ aspect, which can be thought as being at a higher level and owning all the others. The
state machine of this basic aspect will normally be responsible for all different varieties of birth
and death events, but may pass these on in the form of a ‘superevent’ to the other parallel
aspects.

After aggregating the class hierarchy and delegating the parallel aspects in our example, the
result is an entity state machine model that matches the event models. The boxes in it are
state machine. The boxes are the classes for which state machines are constructed and that
appear as distinct components in event models.

Drawing parallel aspects in a data storage structure

Partition is simplest. This sits happily with the view taken in behaviour analysis and facilitates
the distribution of parallel aspects to different physical locations.

Adaregation of parallel aspects into one relation should reduce access times, but requires a
little extra work in the data abstraction layer (components that retrieve logical application
objects from the Data services layer, and restore them).

31.3 The need for aricher analysis methodology

What is an entity or a class? What does a box in an entity model represent? Different answers
lead to different entity models (ignoring differences between notations). The picture is further
complicated by different ways (aggregation, partition and delegation) to specify the
‘subclasses’ and ‘parallel aspects’ of classes.

Given there are many ways to draw an entity model, a methodology should help us to decide
which way suits which purpose. Which way of drawing an entity model best suits database
design? Which way suits object-oriented modelling? We need a methodology which
disentangles the various questions involved and provide some answers.

The methodology implied by clashing entity models can be organised into a handful of major
activities, where a fair amount of parallel activity is possible. Fig. 5j gives an idea of what we
mean.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 199

Fig. 5j

There is a progression from informal to formal, only two models appear in the implemented
code - The entity state machine model and the data storage structure. In simple systems these
will be the same. In very simple systems they will both be the same as the relational entity
model. See ‘The OPEN book’ for further discussion of the methodology in Fig. 5j.

Coordinating software architecture

In non-trivial enterprise applications, rather than select one or other logical view as the basis of
encapsulation, we want to have it all ways. Current object-oriented ideas are inadequate; we
need a richer theory of system specification. We need a software architecture that results in
separates components handling each logical view, and separate components addressing the
physical concern of designing efficient database tables. Our 3-tier software architecture is
designed for this purpose.

You can specify the data attributes of any entity model box using an underlying data dictionary.
You can specify one-to-one correspondence between models by names. A CASE tool can help
as discussed below. The earlier sections of this chapter show how you can make things easier
by taking design decisions that align different versions of the entity model.

31.4 Technology implications

Using object-oriented ideas to specify the Business services layer does not mean you have to
use object-oriented software tools implement the application. We do need some kind of:

e GUI management software to implement the Ul layer

e Common programming language to implement the business services layer

e Database management system to implement the data services layer
We need a database management system that supports the notion of a commit unit, handles

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 200

the back-out of updates to objects within a commit unit, and helps with locking and logging of
transactions. It must have an efficient way of reading and writing the instance variables of not
only of single object but of aggregates of related objects (say, all the details of a master).
CASE tool implications

An upper CASE tool could allow us to draw four models:

Kind of data structure Each box connected to a

informal entity model -

relational entity model data group
entity state machine model state machine and data group
data storage structure physical database table.

Copy and paste functions will enable us to copy all or Component of one model into another.
Ideally we’d like to draw only one ‘master’ relational model, then draw parallel versions only of
the Components that differ in the ‘subordinate’ entity state machine model (where parallel
aspects are separated) or data storage structure (say, where subclasses might be divided).
Working out a pleasing way to cross-refer between the master and subordinate diagrams
would be a challenge.

Copy and paste

The tool should allow you to draw multiple versions of a data structure. It should help you to
duplicate whole entity models and copy and paste partial entity models between them.

Cross-reference by name

The tool should connect any entity model box to related documentation items by recognising
the names (or possibly synonyms) of corresponding classes. The name of a box in an entity
state machine model must match the name of a state machine. The name of a box in the data
storage structure must match the name of a database table in the lower CASE tool. The name
of an attribute must match the name of a domain in the dictionary.

Domain dictionary

The tool should help you to specify the data group behind any box in any entity model as a list
of domains drawn from an underlying domain dictionary. This central repository should be
independent of the internal data storage structure or the external user interface. Most current
implementation tools tie variable definition too closely to one or the other.

Cross-layer class specification

A single class may have properties in each layer, a data storage format, a presentation or
display format, and some application rules. Suppose the user asks for a class from one system
to be added to another. We'd like to reuse the class without defining new data storage and
presentation formats.

We need a way of defining an entity class and attaching to it the baggage of its data storage
and presentation views, so that these can travel with the entity class. We can envisage this
working at the atomic or data item level of system specification. How to handle larger classes
is an open issue.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 201

31.5 Footnotes

On domains in enterprise applications

James Odell (1994) says: ‘Existing entity modelling techniques have deficiencies for object-
oriented analysis. To assist the object-oriented designer, the object-oriented analyst must
specify all object types and associations clearly.” By ‘all’, he means to nag the analysts into
adding the basic data types and domains as classes into their entity models. But they don’t
want to do this!

Analysts don’t usually have too worry much about domains. True, specifying the individual
variables in a system specification is important, often difficult and always time-consuming. But
specifying the domain of each variable is not that difficult. It can be postponed until near the
end of design.

Every database builder knows they must define the domain of each variable. Most are happy
to leave it until the analyst has completed something like a relational entity model. You need to
get an overview of the system structure before defining its details.

When it comes to specifying the domain classes in enterprise application, a simple two-level
structure, generic and applicaion-specific, is usually enough.

Generic domain classes

At the bottom level of specification you may use a few generic domain classes, such as text,
number and date formats. These are only a minor concern; you probably need only the half a
dozen or so data types provided by your chosen implementation technology.

Application-specific domains

At the next higher level above generic domain classes, there may be tens or hundreds of
application-specific domains, such as ‘Phone-Num’ and ‘Country’. There are two ways to
specify these system specific domains, at the bottom and at the top of the specification.

You may specify the domain in a dictionary, to be reused in defining the attributes of classes.
You might define a dictionary entry Phone-Num as being of the generic domain class Number
and always beginning with 0, then specify the classes Supplier and Customers as having
attributes called Supplier-Telephone and Customer-Telephone, both with the properties of the
application-specific domain called Phone Num.

Note that naming conventions must be agreed. If you name two or more attributes directly after
their domain, then wherever the context is ambiguous, say in an input message, you will need
to declare the context somehow, say Supplier/Phone-Num or perhaps Phone-Num (of
Customer). For this reason, people tend to compose an attribute name by combining the class
name and domain name.

Or else you can turn the specification on its head by declaring the domain as a high-level
master class (say Country) in the entity model, and then specify different classes owning this
attribute (say Customer and Supplier) as detail instances of the master class. Thus, you can
invert any attribute variable, or rather its domain, to become a class whose key is one valid
value of the domain.

An age-old question of database design is: should we do this? Should we show the
application-specific domains as classes in an entity model? We addressed this question in
‘Introduction to rules and patterns’.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 202

On classes as state machines

Jackson (1975) showed how to decompose a system into components by resolving ‘structure
clashes’. The resulting system is a set of co-operating state machines, where each process
has an input data structure, a state vector and a state variable. Let us bring Jackson up to date
with object-oriented by adding object-oriented terms in square brackets to Jackson'’s original
remarks.

The input data structure of a class

Jackson considered each object as consuming the stream of events that update it. In object-
oriented terms, this stream of events is a stream of method invocations. Each event invokes a
method of the object. We name each method after the event that invokes it, or after a
superevent where more than one event can trigger the method.

The state vector of a class

Jackson grouped the private variables of a class in its state-vector. He said: ‘the contents of
the state-vector are private to the [object]: they are truly “own variables” in the sense that no
other [object] should be able to inspect or change them, or to take cognizance of their formats
and values’. In object-oriented terms, this is encapsulation.

To resolve an ‘interleaving clash’, you have to separate the ‘multi-threaded’ process from its
the state vector. You keep one copy of the process (one for the class), but many copies of the
state-vector (one for each object). Thus, Jackson promoted the idea that a database is nothing
more or less than a place to hold the state-vectors of concurrent objects. In object-oriented
terms, this is resolving a concurrency problem.

The state variable of a class

Jackson said: ‘the [object] has only one linear text and one location counter; the current place
in the text must correspond to the current place in the data structure [stream of method
invocations] being processed’.

In object-oriented terms, the importance of the object’s location counter or state variable is that
you can use it in evaluating rules. If an event finds an object in the wrong state, then that event
must fail. Following our application modelling techniques, rules are coded in the form of event
preconditions.

Object-based versus object-oriented

Jackson’s view of object classes is sometimes called ‘object-based’ rather than object-
oriented, meaning that it does not incorporate the idea of class hierarchies or inheritance.
Berrisford and Burrows [1994] showed this to be untrue.

Class hierarchies and aggregates

Fig. 5k shows School as an aggregate in which the basic aspect of the class has parallel
aspects that are mutually exclusive. The relationships from the basic aspect to the parallel
aspects are crossed by an exclusion arc. The entity model then looks like a class hierarchy,
but the lines between boxes are ‘association’ relationships rather than ‘is a’ relationships.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 203

Fig. 5K

Head Teacher and Principal Governor are disjoint ‘aspects’ rather than disjoint ‘subclasses’. Is
this merely sophistry? Does it makes a difference to the state machines?

Berrisford and Burrows (1994) showed that to express the disjointness of subclasses in state
machines, you have to draw the state machine of each subclass as an option within a state
machine of the superclass. So the life of a subclass may be completely rolled up into the life of
its superclass.

At first sight (we haven’t explored enough examples yet), it seems like the same principle
applies to an aggregate of disjoint aspects as to a class hierarchy of disjoint subclasses. If so,
then we would say the distinction is sophistry.

Glossary

Adggregation: grouping the properties of subclasses or aspects into one high-level superclass
or aggregate class.

Aspect: an independent role of a class, a group of attributes whose updating is constrained by
one state variable, a class whose behaviour is representable as a single finite-state machine.

Class: a set of object instances that share the same properties.
Class hierarchy: a structure dividing a superclass into subclasses.

Delegation *: dividing the properties of a class between a high-level class and low-level
classes connected to it.

Event: an atomic transaction, a minimum unit of consistent change, transient but leaving a
mark on persistent objects.

Event model: a specification that shows how one or more objects are affected by a single
event, and the constraints that must be tested.

Object: something that persists and must be remembered.
Partition *: dividing the properties of one class between smaller roles or aspects.

Pseudo-inheritance: copying the properties of a superclass into its subclasses.

* The difference between Partition of parallel aspects and Delegation of parallel aspects is not obvious.
Both mean separating a class into parallel aspects. But Delegation implies one of the parallel aspects

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 204

is appointed as the ‘basic aspect’ that is at a higher level and owns all the others. You can think of the
‘basic aspect’ as the creator and destroyer of the object identity, simultaneously creating and
destroying all related aspects.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 205

32. Design issues

This chapter discusses design issues and tradeoffs. It shows how the separating the
application and Data services layers of 3-tier architecture can help you to hide data replication
and aggregation from the Business services layer of code, and minimise data migration
difficulties.

32.1 Datareplication and derivation

Redundant data makes one object dependent on another, so if you update one object, you are
obliged to update another at the same time. But redundant data is not necessarily a bad thing.
You have to consider a design tradeoff, and the kind of redundancy that is involved.

Tradeoff: enquiry process v. update process

The speed of a process is largely determined by the number of discrete objects it accesses.
Reducing the objects accessed on update may increase the objects accessed on enquiry, and
vice-versa, so you cannot optimise both updates and enquiries.

Similarly, the simplicity of a process is largely determined by the number of classes it
accesses. Reducing the classes accessed on update may increase the classes accessed on
enquiry, and vice-versa, so you cannot simplify both updates and enquiries.

An aim of relational data analysis is to simplify programming, to prevent programmers from
writing unnecessary code. It achieves this by reducing data replication. E.g. you would
normalise the Sale class on the left below, specify Stock as a separate class and assign Stock
Description as an attribute of Stock rather than Sale.

Fig. 6a
Thus, you prevent programmers from having to locate and update all the Sales of a Stock, in
order to update a Stock Description. This has the added benefit of reducing the danger of
inconsistent Stock Descriptions being stored, through the update process not being completed
properly (whether this is a failure of the programmer or the technology).

People sometimes teach relational data analysis as though its aim is to remove all redundant
data. First, this is a means not an end. Second, there are two kinds of redundant data -
replicated data and derived data - and they have different implications.

Replicated data

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 206

Replicated data occurs where one piece of information is repeated. This is not necessarily a
bad thing. You may choose to replicate data to speed up or simplify enquiry processes.
Typically, you might repeat an attribute of a master object in every one of its detail objects.

E.g. you might store Stock Description as an attribute of Sale, replicated in all Sales of a Stock.
This will speed up any enquiry on a Sale that would otherwise have to access the Stock object
for the Stock description. And if the Stock object is stored in a different database from the Sale,
it will increase the cohesiveness and robustness of local processing.

If you do replicate data, it is wise to maintain the original data as well as its copies. So you
should maintain Stock as well as Sale. We'll come back to this under ‘Distribution’.

Derived data

Derived data occurs where several pieces of information are summarised in one place as the
result of a calculation or procedure. The usual example is a total stored in a master object of
detail objects. E.g. you might store a summary total of Sales in a Stock object, to save adding
up this total on each enquiry.

Another kind of derived data is a derivable sorting class. E.g. ‘Customer Interest in Stock’ is a
derivable sorting class that clusters all the Sales for a given combination of Customer and
Stock.

Fig. 6bl

Removing derived data can frustrate the aim to simplify programming. Suppose you omit the
sorting class from the data structure. Programmers will have to sort Sales by Customer within
Stock, or Stock within Customer, every time they want to display them in a structured list. In
effect, they manufacture a ‘soft’ instance of the sorting class every time they need one.

In general, analysts can make extra work for programmers. Missing derivable classes and
relationships from the data structure can make programming unnecessarily complex.
Programmers end up defining the missing classes and relationships in program code. And they
may have to do this lots of times, in many different programs.

Given the tradeoff between defining a ‘hard class’ in the structure of the persistent data, and
defining a ‘soft class’ in one or more transient processes that operate on the data structure, the
balance lies in favour of the former. As a rule:

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 207

Specify classes and relationships in the data structure, rather than leave them to be
constructed by programs.

Benefits: simpler enquiry programming and easier program maintenance. True, whenever a
class is amended you will have to amend all the programs which refer to that the class, but this
is the case whether the class is hard or soft. And there will simply be less program code to
maintain if the class is a hard one.

Costs: some extra update processing, extra data structure maintenance and data migration
costs. If you map every entity class onto a database table, then you will have to ‘migrate’
persistent data from one structure to another whenever a class is amended.

Benefits without costs?

How to get the benefit of an application-specific entity model that makes application
programming easy, while at the same time using a data storage structure that speeds up
enquiry processes, increases the robustness of distributed operations, and facilitates
maintenance without data migration? The 3-tier architecture opens up the interesting possibility
that you might define different data structures for:

* Business services layer - entity state machine model designed to simplify processing
+ Data services layer - data storage structure designed for performance and flexibility.

Most database designers reproduce the ‘logical’ entity state machine model as closely as
possible in the data storage structure. This is how most systems are built. But you might take a
very different approach in designing a large enterprise application. You can write application
programs to operate on The entity state machine model , while storing instance data in a
differently-structured data storage structure.

Replicated data belongs in the Data services layer

We propose that replicated data belongs in the Data services layer, not in the Business
services layer

The idea is that you can specify and code the Business services layer as though no data is
replicated, hiding all replication in the Data services layer.

E.g. the application program that updates a Stock Description will assume it is stored only in a
Stock object; it will call the data abstraction layer; this will find all the places where the Stock
description has been replicated and update all of them. So the application program is entirely
unaware of how far data has been replicated. The data abstraction layer handles the extra
complexity. You may even be able to a buy a distributed database management system that
does the job of the data abstraction layer for you.

Derived data belongs in the Business services layer

Perverse though it may seem, we propose that derived data belongs in the Business services
layer, not in the Data services layer.

It is nonsensical to hide derived data in the Data services layer only. It would be foolish to code
an enquiry in the Business services layer to report the total Sales of a Stock by adding up the
total, if the total has already been calculated and stored in the database. Likewise, it would be
foolish to code complex enquiry processes in the Business services layer as though a sorting
class does not exist, if it does exist in the Data services layer.

Doing it the other way around is far more reasonable. You can specify and code simple
enquiry processes in the Business services layer as though a derivable total or sorting object
has been stored. You may then choose to store the derived object in the Data services layer,

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 208

or else the data abstraction layer can derive it and present it to the Business services layer
whenever it is required.

Conclusions: Don'’t store redundant data until you have established a clear business case in
terms of speeding up enquiries or increasing the robustness of local operation. Specify
‘replicated data’ in the Data services layer of code. Specify ‘derived data’ in the Business
services layer of code. Yes, this does mean the conceptual model of the Business services
layer is influenced by physical design considerations, but the alternative is ludicrous.

32.2 Data distribution

A single central database is the simplest option from the design point of view. The motivation
for distributing subsets of a database around the nodes of a network is to enhance the
performance or robustness of local processing at a node. This may involve replicating data at
different locations.

If you define different data structures for the Business services layer and Data services layer,
then you can hide all data distribution decisions and complications in the Data services layer.
You may the annotate the data storage structure with distribution details, leaving The entity
state machine model untouched.

When it comes to distributing objects, the classes in the data storage structure might be
divided into three kinds.

Objects that sit naturally at location

Locations where a business wants to store data often appear in the model as classes
(department, warehouse, local office, or whatever). The natural scheme is store an object of a
such a class at its real-world business location. Some details fall naturally under these
locations.

Fig. 6¢

Not every object is naturally related to only one location. A customers may be the recipient of
Sales from several Warehouses. You might begin by assuming that all multi-location objects
objects are stored at a central server location.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 209

Detail objects that link objects in different locations

You might choose to store a Sale at the location of either Customer or Stock. The notation in
Fig. 6d suggests a Sale is stored with its Stock.

Fig. 6d

Or you might choose to store Sales in a distinct storage location, separate from both Customer
or Stock. Either way, distributed locations are connected along a one-to-many relationship.
Managing a one-to-many association between distributed objects can be difficult. So you might
instead choose to replicate a Sale in both locations, and connect the two Sales together.

Fig. 6e

This has the advantage of connecting locations along a one-to-one relationship, which is
simpler to manage. Of course, if there are further detail classes connected to a Sale, you now
have to decide where they are stored, and perhaps duplicate them as well.

Master objects that are used in several business locations

Some master objects (like ‘Currency Conversion Rate’ or ‘Customer’ in our example) can
appear at several business locations. You might choose to store these objects only once, in a

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 210

central server or head office storage location. The problem is that local processing may be too
slow, or if the network goes down, people cannot carry on working on their local office
database. A way around this is to unnormalise data and copy the master object into several
locations, so user have all the information they need close at hand.

You might repeat the Customer name in every one of their Sales records. Or more openly, you
might copy each Customer object in all business locations.

Fig. 6f

You should not eliminate the original master object. One object (in a master location or a
distinct server location) has to keep track of all the places where the object has been copied,
for the purpose of broadcasting updates.

So in short, distribution means you may have to:
e select one business location for objects that naturally relate to more than one business
location
¢ define distinct storage locations other than natural business locations
¢ divide one class into two parallel aspects connected by a one-to-one relationship
¢ divide one object into one master object owning many copies.

Tradeoff: robustness v. inconsistency

Where a single database is partitioned and stored at several locations, the issue of robustness
arises. If the network fails, you want to carry on working at one database location while not
connected to the others.

To increase robustness, you will tend to replicate data at different locations. But this means
that there is the danger of data in different locations getting out of step, whether due to sloppy
design by or failure of the network technology. What if somebody updates, or worse deletes, a
Customer object on one of the databases while the network is down? The various databases
will get out of step.

Getting the databases back in step can take a great deal of effort. It is not just a question of
running automatic update programs. While the network is down, you might accept Orders at a
Warehouse for a Customer that has been deleted or black-listed at head office.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 211

When you find out later that the Customer has been black-listed: Should you now reject these
Orders? Or should you find some other Customer to take them? These are questions that the
business analyst must address rather than the database designer.

32.3 Data migration

Data replication and data distribution are two good reasons to design a data structure for the
Data services layer that is different from the data structure of the Business services layer. Data
migration may be another reason.

Programs are transient. Data is persistent. So changing a data storage structure involves an
extra step, called ‘data migration’, that changing a program does not. You have to reorganise
already-stored data, shifting it from one version of the data storage structure to the next.

The more you specify application-specific classes and relationships in the data storage
structure, the greater the data migration cost whenever these classes or relationships change.

This is not necessarily a bad thing. Remember, the rule to specify classes and relationships in
the data structure rather than leave them to be constructed by programs. What the database
designer misses out, the programmers will have to put in, tenfold. And if data migration is
needed because you are correcting a poor data storage structure, inserting classes or
relationships you overlooked, then you have only yourself to blame.

Conclusion: expect data migration and include it your plans.

Nevertheless, there are some very large databases where data migration is just too expensive.
Is there an alternative design for maintenance strategy that will reduce or eliminate data
migration?

Avoiding the cost of data migration

Can you have it both ways? Can you have both the specificity of The entity state machine
model , and the flexibility of a data storage structure that does not require amendment when
The entity state machine model is altered?

Again, yes you can. You can write application programs for the classes in The entity state
machine model , and store instance data in different and more generic structure in the data
storage structure.

Fig. 6g shows an extreme example. The structure on the right is generalised so far that no
conceivable application amendment would require it to change.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 212

Fig. 69
How does this work? You code the entity classes and relationships in the Business services
layer. You code the data storage structure in the Data services layer. You design an data
abstraction layer to translate between the entity classes and relationships and the data storage
classes and relationships.

When your application program wants the instance data of a specific Customer, it does not
read the data storage structure but calls the data abstraction layer. How the data abstraction
layer assembles the Customer object from the data in the data storage structure is a matter
only for the data abstraction layer.

When The entity state machine model is altered, you have to amend the application programs,
you have to amend the data abstraction layer, but you do not have to restructure the data
storage structure or carry out a data migration exercise.

Conclusion: where it is justified (by data migration or performance costs) introduce an data
abstraction layer to separate The entity state machine model from the data storage structure
(designed for flexibility and performance).

32.4 A few more tradeoffs

The art of system design is to find the best balance between conflicting objectives. Many
authors have listed general objectives for system design. Some have suggested ways of
measuring how far these objectives are achieved. Relatively few have focussed on the
tradeoffs between objectives.

The optimum balance between conflicting objectives will differ from system to system. We
have been making generalisations about tradeoffs in the kind of system we are most interested
in - enterprise applications. Here are some more tradeoffs to finish with.

Efficiency: size v. speed

You might reduce the amount of code in a monolithic program by removing a repeated block of
code into a reusable subroutine. But this will tend to slow the program down.

You might provide a faster alternative algorithm for a given process. For example, you might

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 213

design a faster text printing algorithm that produces only rough or draft quality print. But this
will increase the amount of code in the system.

Object-oriented programmers often do provide alternative algorithms for a single process. The
substitution of one algorithm by another is recognised by Gamma et al in the form of a design
pattern called ‘Template’. The substitution of one step in an algorithm by another is recognised
by Gamma et al in the form of a design pattern called ‘Strateqy’.

Yet in the Business services layer of an enterprise application, you virtually never provide
alternative algorithms for one process. In fact, it is not worth worrying about processing speed
at all. The speed of an enterprise application is completely dominated by the time taken to
store and retrieve data. Efficiency lies in the hands of the database designer.

In speeding up data access, a database designer will tend to increase the backing store
needed to hold the database. The designer will allow more space for a data group to fit on the
page of the database it is placed on, so it doesn’t overflow that page. The designer will allow
more space for storing relationships, space for extra pointers and extra indexes.

Conclusion: buy much more database space than you think you will need.

Database accessibility: crude locking v. concurrent usage

While it is running, a database update process has to lock the entities it is working on so that
no other process can alter them. A crude locking mechanism will lock the whole database, or a
large area of it. The ideal locking mechanism will lock only the objects actually updated by the
process

If there are many concurrent users of the system, a crude locking mechanism can dramatically
degrade the system’s performance. To speed up the system, you will need a more
sophisticated locking mechanism that works at a lower level of granularity.

Conclusion: refine the locking mechanism in proportion to the number of concurrent users.

Database enquiry speed: aggregation v. flexibility

To speed up a specific enquiry or display you may store all the data you want for that enquiry
in one large object. The price you pay is inflexibility and disoptimisation from another enquiry
perspective.

For example, if you store all of a Customer’s Orders within the Customer object, then you can
easily and swiftly assemble the list of Customer’s Orders for display.

You might call this an aggregate entity state record, or an unnormalised object. Calling it a
‘real-world’ object is nonsense. An aggregate entity state record is no more a real-world object
than a third normal form relation is a real-world object, it's just data storage that’s optimised
from one perspective, usually for output display.

Such optimisation makes the system less flexible, less suited to processing from another
perspective. For example, you cannot so easily list all the Orders placed for a specific Stock
Type.

(By the way, some of the things people say about how much better an object-oriented
database is than a relational database are the same things network database designers have
been doing for twenty years to optimise performance. To speed up access - store pointers to
the detail objects along with the master object. To save space - roll up detail objects into one
or other master object, making an aggregate entity state record. These are matters for the
Data services layer, nothing to do with defining the Business services layer.)

Conclusion: don’t unnormalise stored data into an aggregate entity state record until you have

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 214

established a clear business case in terms of enquiry speed, and define aggregate tables in
the data storage structure rather than in the entity state machine model.

Cost of usage v. cost of design

Making the users work at the user interface easier takes more design effort. Conclusion: spend
money on usability in proportion to the number of end-users who will benefit from your design
efforts.

Breadth v. focus

Users want a system that does the job, no more, and operates efficiently. If you give users
more than they ask for, you may end up obscuring the main functions behind features people
never use, making the system harder to use, and slowing it down.

(Perhaps you discovered this from a user’s perspective when you last upgraded your word
processor to the latest version.)

Worse, features that are never used tend to fall into a state of disrepair and decay. Since
nobody cares about them, you can be pretty sure that they won’t work very well if somebody
wants to use them in the future.

Conclusion: don’t implement more features than you are asked to, but don’t let this stop you
thinking ahead and designing for maintenance.

Complexity: component size v. component interaction

Designing a large component or module takes a long time. A large component is harder to
understand, test and maintain. Most people recommend you decompose a system into small
self-contained components. Indeed, this is a mantra of object-orientation.

The trouble with replacing a large component by smaller ones is that they must talk to each
other. There is more interaction between components than before. You have to concentrate
more on the interfaces between components. Message-passing becomes more of a design
issue. You replace one kind of complexity (proportional to component size), by another kind of
complexity (proportional to component interactions).

(There is a more obscure difficulty with defining many small object-oriented components or
classes. Where not all the effects of one event type appear in one class, you may have to add
an extra ‘gatekeeper’ class to sit on the path of an event type, whose only job is to decide
whether to let an event instance through to a related object or not.)

Conclusion: when you partition a system into smaller classes, expect to increase the effort you
apply to Event Modelling.

32.5 Summary

We've discussed design issues and tradeoffs. We’ve shown how the 3-tier architecture can be
used to minimise data migration costs, and hide data replication and aggregation from the
Business services layer of code.

In summarising the conclusions of this chapter, we can list a dozen design or so principles for
large systems.

« specify classes and relationships in the data structure rather than leave them to be
constructed by programmers

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 215

» where it is justified (by data migration or performance costs) introduce an data abstraction
layer to separate the entity model from the data storage structure (designed for flexibility and
performance)

« don’t store redundant data until you have established a clear business case in terms of
speeding up enquiries or increasing the robustness of local operation

* specify ‘replicated data’ in the data services layer of code

« specify ‘derived data’ in the business services layer of code

» expect data migration and include it your plans

* buy much more database space than you think you will need

» refine the locking mechanism in proportion to the number of concurrent users

» don’t unnormalise stored data into an aggregate table until you have established a clear
business case in terms of enquiry speed

« define aggregate tables in the data storage structure rather than the entity model

» spend money on usability in proportion to the number of end-users who will benefit from your

design efforts
« don’'t implement more features than you are asked to, but don’t let this stop you thinking
ahead and designing for maintenance

» when you partition a system into smaller classes, expect to increase the effort you apply to
Event Modelling.

The entity modeler
Structural model patterns and transformations

Version: 7

Copyright Graham Berrisford 01 Jan 2005

Page 216

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 217

33. From design patterns to analysis patterns

Analysts need what might be called ‘analysis patterns’. These will be similar to design patterns
for object-oriented programming in some ways, but different in other ways. This chapter
focuses on a pattern they call State. The footnotes mention also Composition, Decorator,
Facade, Adapter, Bridge and Proxy.

331 What analysts need from patterns

Design patterns have been developed by and for object-oriented programmers. The usual
reference is ‘Design Patterns: Elements of Reusable Object-Oriented Software’ by Gamma et
al.

Gamma et al. are widely and affectionately known as the Gang of Four. Their work is rightly
acclaimed,; it is an example to those teaching analysis of how to teach expertise (not just
notations) via patterns.

Are design patterns relevant to Analysts and designers?

Analysts need patterns for processing persistent data

Most object-oriented designers work on systems that process transient objects; for example,
compilers, graphical interfaces and financial modelling systems. So naturally, design patterns
are mainly concerned with transient objects.

The data in a business database is composed of entity state records that represent real-world
entities, long-lived entities that the business seeks to monitor and perhaps control. So analysis
patterns must apply to persistent entities.

Fig. a repeats from chapter 1 a scale from transient objects to persistent objects. This is very
closely related to the scale from type to state. The longer objects persist, the more that
apparently fixed types become variable attributes or transient states.

Fig. a

It turns out that the persistence of data has a big influence on patterns for software design, as

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 218

you shall see. You need a theory for how to manage states as well as types. Traditionally,
different modelling theories have been applied to modelling types and states. One of our aims
is to combine these theories.

Analysts need patterns that prompt questions

The Gang of Four say ‘Design patterns solve many of the day-to-day problems object-oriented
designers face.” Each design pattern fits to a given problem. You use a design pattern to solve
a problem you already know you have.

Analysts need help with analysis, to discover what the problem is. A analysis pattern should
help analysts to ask questions and find things out. It should help you to test and uncover
problems in an existing specification. The most cost-effective training involves teaching bad
patterns as well as good ones.

Analysts need patterns to do with real-world objects

Design patterns help designers to sort out computer-world objects. Analysts need to sort what
things in the real world have to be represented in the system. Analysis patterns must help
analysts to investigate the rules and practices of an enterprise in the real world, the one that is
to be supported by the enterprise application.

Analysis patterns must be concerned with eternal verities in the way that real people and real
businesses behave. At least, those eternal verities that can be captured in a ‘conceptual
model’ of business objects and coded in the ‘business services layer’ of a system. Analysis
patterns will be used mostly in defining the business services layer rather than the Ul layer.

Analysts need patterns that are logical

Design patterns are expressed in physical terms, in terms of implementation mechanisms, and
more specifically in terms of object-oriented programming mechanisms.

Analysis patterns should be expressed in logical terms. They must define characteristics of the
problem domain rather than the implementation domain. Analysts should be able to use them
without knowing what technology will be used to implement their design, be it C++, Java,
COBOL or ORACLE.

For example, OO-style class diagrams specify where objects hold references to other objects.
Fig. b shows two class diagrams on the left that are implementations of the same logical entity
model on the right.

Fig. b

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 219

The logical notation above for modelling the cardinality of a relationship between classes is
well known. See the chapter ‘Rules and relationships’ in Analysis patterns.

33.2 Inheritance and polymorphism in design patterns

Since the Gang of Four say ‘Almost all the [design patterns] use inheritance to some extent’ let
us begin by reviewing the idea of inheritance. A class hierarchy or inheritance tree is a
structure composed of superclasses and subclasses, wherein a subclass can inherit or
override the properties of a superclass above it in the hierarchy.

object-oriented technologies help you achieve reuse by applying inheritance and
polymorphism to a class hierarchy. See the chapter ‘Class hierarchies and aggregates’ for
more about inheritance and polymorphism.

The general shape of a design pattern

Many of the Gang of Four’s design patterns are rather similar, based on a common template
involving an abstract class, shown in Fig. c.

Fig. c

The ideas of patterns like this is to separate the interface of an object or a process from
various possible implementations of it. Thus, design patterns of this shape capture expert
knowledge about good uses for polymorphism and abstract classes.

The Gang of Four again: ‘When inheritance is used carefully (some will say properly), all
classes derived from an abstract class will share its interface. All subclasses will be subtypes
of the abstract class.” See for example their design patterns: Iterator, Observer and Abstract

Factory.

Analysts need few patterns that feature class hierarchies

There may be a few over-enthusiastic object-oriented designers who believe that good design
means explicitly spelling out all the class hierarchies you can find in the entity model of a
system.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 220

Fig.d
Class hierarchies are common in some kinds of software design. But chapters 5 and 6 have
explained why you are unlikely to find so many in the persistent data structures of enterprise
applications. Even the Gang of Four say ‘Designers overuse inheritance. Designs are often
made more reusable and simpler by depending more on object composition.’

Good analysts do not specify many class hierarchies in the entity model that specifies the
persistent data structure of an enterprise application. Where the list of subclasses is very long,
or variable, or there are complex overlapping hierarchies; then defining class hierarchies
creates schema evolution problems.

Since analysts normally specify class hierarchies in other ways and places, few analysis
patterns will involve inheritance, and very few will feature polymorphism, at least, not in the
way that object-oriented designers think of these things.

You might suppose then that analysts will find little use for design patterns. But it turns out you
can identify where some design patterns apply to enterprise application design. And you can
reshape some design patterns into analysis patterns. We go on to reshape one design pattern
for use by analysts, replacing the class hierarchy with classes connected by one-to-many
relationships.

33.3 The State design pattern for object-oriented designers

Design patterns might be divided into three groups:

* not very useful in enterprise applications

« useful to analysts in the business services layer

« useful to designers in the others layers or the interface between layers.

The second group is the most interesting. The Gang of Four define a pattern called State that
is designed to ‘Allow an object to alter its behaviour when its internal state changes. The object

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 221

will appear to change class.’ Let us look at how this design pattern can be reshaped for
analysts.

Our tiny case study features one object class, Person, and two event classes, Employment
and Death. The Employment event can only happen if the Person is unemployed. The Death
event has two effects depending on whether the Person is employed or unemployed. Let us
say Death (employed) goes on to affect Employer.

Fig. e shows the State design pattern in the entity model. Person and Person-Employment-
Status are parallel associated objects. There is a class hierarchy under Person-Employment-
Status of subclasses Employed and Unemployed.

Fig. e

Messages to Person are delegated (by the implementations of the methods defined in its
interface) to Person-Employment-Status where appropriate, i.e. where the response depends
on the state.

You can use the State design pattern to implement one event that has different effects on an
object in different states. You code each event effect as a distinct (polymorphic) method in a
subclass of the status object. The status object divides the event between event effects.

Fig. f illustrates that you code the Death event in the Employed class and Unemployed class
as two distinct methods. Personal-Employment-Status passes the Death event down to the
appropriate subclass.

Fig. f
You have to code the selection between subclasses somewhere - in a data structure or a
process structure. If you code it in the data structure, then an object-oriented programming
environment can make the selection between subclasses ‘under the covers’ in any process
that hits the status object. So you don’t have to make the selection between types explicit in
any process.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 222

The State design pattern as a way to avoid selections in processes?

You might use the State design pattern as a device to avoid coding a selection or case
statement within a method. You place the case statement in the data structure and code each
option as a distinct method in a distinct class.

If the aim is to make code more maintainable, beware. First, what you gain in one way you
lose in another; it becomes harder to see which methods are in fact related by mutual
exclusion when an event is processed. Second, where data persists, it is easier to change the
structure of a transient process than the structure of persistent data.

In enterprise applications, it is not reasonable or practical to remove all case statements from
methods. It is like trying to define all constraints as state-transitions in state machines. This
way of thinking, of trying to design everything using only one tool, is a trap to be avoided.

334 Parallel classes

There is one element of the State design pattern that is not so helpful to analysts - the class
hierarchy showing each state as a subclass under each parallel aspect. Given that fixed class
hierarchies do not abound in the data structures of enterprise applications, inheritance and
polymorphism cannot be so useful as you might hope, and design patterns have to be
reshaped for this kind of system.

However, there is another element of the State design pattern that analysts can use. We have
argued from around about 1980, and most recently in the Computer Journal (1994), that a
class is best divided into parallel aspects along the lines of its need to maintain state variables.

A state variable is an attribute with a short range of values that is tested as part of the
precondition for one or more events. E.g. if a Person’s Employment Status = employed, then
an Employment event cannot happen. And if a Person’s Employment Status = unemployed,
then a Redundancy event cannot happen.

Ask of a class: Does it maintain a state variable? If yes, create a parallel class to maintain it.
Motivations include: keeping each class smaller and easier to comprehend on its own; suiting
the paradigm of object-oriented programming; and tightly encapsulating the maintenance of a
state variable.

This last means that the state machine for each class can be described elegantly using a
regular expression notation, and this has further advantages in pattern recognition.

Where a class maintains several state variables, you should appoint a ‘basic aspect’ that is the
master of all parallel aspects. Fig. g shows the basic class as the master of all the parallel
status classes.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 223

Fig. g
Fig. h shows a possible example. It has three cyclical states, each varying independently.
There is a ‘boundary clash’ between the cycles.

Fig. h
The basic class is responsible for maintaining object identity, and any attributes that can
change in an unconstrained way as long as the object exists. The basic class so trivial it
requires no state variable and there is little value in modelling its behaviour in the form of a
state machine; it would be simply a sequence of creation, random updates, then deletion.

Some simple enterprise applications are composed of classes with only basic aspects.

Rolling up parallel aspects

In general, you should create a parallel class for each state variable that has to be maintained.
But Fig. i shows that in simple cases, you might roll up one of the parallel aspects into the
basic class. You don’t have to do this, but it is a harmless way to condense the specification
and code in simple cases.

Fig. i

We have been talking about the specifying the business services layer of a system. You need
not separate parallel classes in the data services layer. You can easily roll up all parallel
aspects into one database table. One benefit: this speeds up performance, since each process

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 224

will have fewer data objects to retrieve and restore. One cost: it makes the interface between
the business services and data services layers more complex.

33.5 The State design pattern reshaped for analysts

Applying the pattern in section 7.4 to the case study, you would specify a Person class that is
careless of the state, and a Person-Employment-Status class that flip-flops between employed
and unemployed. All the processing that depends on the state belongs in the Person-
Employment-Status class.

Fig. j
You can specify the subclasses not in the data structure but in the process structure of a Death
event. Fig. k shows you specify the effect of Death on Person Employment Status as a
selection between options Death (unemployed) and Death (employed).

Fig. k
The event model is an abstract specification. When you come to code it, you might well code
the selection between event effects as a case statement within the transient method for the
Death event, rather than in the persistent data structure. This has advantages. In large
enterprise applications, this will help to reduce schema evolution problems, since you can
change the structure of a transient process more easily than the structure of persistent data.

Some variations on this theme are shown below.

Status cycle as a historical record

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 225

a cyclical state, do users want to remember the history of past cycles? If yes, you can
introduce a one-to-many detail class.

Fig. | introduces a detail class called Job.

Fig. |

Status as an optional detail

Fig. m shows that if you don’t want to remember the history of past cycles, only the current
one, you might remove the fork from the relationship in Fig. I.

Fig. m
You don’t normally see this shape however, because designers normally roll an optional
aspect like this into its master class.

State variable as a domain class

Fig. n shows you might add a domain class for the state variable attribute, called Employment
Status.

Fig. n
It is helpful to distinguish domain classes defined in the business services layer (under end-

The entity modeler
Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 226

user control) from classes defined in the Ul or data services layer (under designer control).

If designers want to define the values of a state variable in some kind of table, perhaps along
with an expanded description of the state that is useful in error messages, you should define
the domain class for the state variable in either the Ul or data services layer.

If users want to be able to change the description of a state (‘unemployed’ to ‘redundant’), you

may define the state variable as a state class in the business services layer. But be careful not
to expose the class’s specification too far to manipulation by users; you surely don’t want users
creating or deleting states, and thus changing the rules of the application.

Domain classes are discussed further in other volumes in this series.

336 Recursive composition design pattern

Composition defines an abstract class that provides a common interface for every level of a
hierarchical structure. It specifies the bottom ends of the hierarchy as a special case.
Curiously, it does not specify the top end as a special case, though this is sometimes
necessary.

Recursive composition is familiar to most database designers. When database designers
specify fixed-depth recursion, a different pattern emerges, in which the top and bottom ends of
the structure appear under parallel classes.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 227

However, the recursive structures found in enterprise applications are normally of variable
depth; three varieties are possible.

The volume ‘Patterns in entity modelling’ says more about such recursive patterns.

33.7 Recursive decoration

You can specify attributes as classes, then specify a new thing as a subclass of each relevant
attribute class, using inheritance to obtain the attributes. But multiple inheritance can lead to
complex structures, difficult to manage. You cannot make schema changes, alter the attributes

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 228

of a class, without changing the data structure and losing the instance data. To avoid these
problems you can use the Wrapper pattern to add properties to a basic thing, one on top of
another.

You store new attributes as object instances without changing the data structure and thereby
losing all the instance data. The price is that you hide the basic object beneath layers of
attributes. When a wrapper is added, the object identifier appears to change.

Each wrapper completely encapsulates the original object and any previously created wrapper.
Each wrapper has a different object identifier. The identity of the original object remains the
same, but since an external client can only call the outermost wrapper, the identifier appears to
be that of the last wrapper.

Client --> Wrapper3 --> Wrapper2 --> Wrapperl --> Object

In fact, some calls are dealt with in the wrapper without forwarding, or are supplemented
before forwarding. This is the way the wrapper is able to add extra functionality.

This kind of data structure is too inefficient for database designers. Both multiple inheritance
and recursive decoration are devices for designer-maintained data rather than user-maintained
data. Enterprise application designers don’t normally specify attributes in either of these ways.
They use relational theory. They view objects as rows of a table, each row identified by a
unique key. They view attributes as columns of the table. They may invert attributes to become
key-only master classes at the top of one-to-many relationships as shown below.

You can make schema changes, add new attributes to a relation, without losing all the
instance data; you can preserve the identity of objects stored so far. But you do have to
recompile the data structure, and probably some of the programs, and retest the system.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 229

33.8 Using design patterns to separate subsystems

The Gang of Four say ‘Each design pattern lets some aspect of the system vary independently
of other aspects, thereby making the system more robust to a particular kind of change.’

Many design patterns are about decoupling servers from clients. They help you to separate
concerns for ease of maintenance, to keep distinct subsystems apart yet also connect them.

Experts advise keeping the bridges between subsystems as narrow as possible, keeping
interfaces simple and economical. This is very much the idea behind one of the Gang of Four’s
design patterns called ‘Facade’. This and other design patterns can be useful in bridges
between subsystems of the 3-tier architecture.

Below, we've slightly edited and rearranged a contribution by Patrick Logan to the patterns
group on the internet, in which he suggests the application of other design patterns to the 3-tier
architecture:

‘Constraints

‘Despite the variation of user interfaces and databases, the system as a whole must maintain
its integrity (adherence to system requirements). The logic and the system integrity checks
represent most of the new development required.

‘The user interface tier should interact with the user, but refer to the middle tier (business logic
and integrity) for the computation. The middle tier should be implemented in terms of abstract
objects, hiding the business logic from the user interface, and from the details of the
databases.

‘You can separate the three tiers using the structural patterns described in Design Patterns,
such as Adapter, Bridge and Proxy.’

Analysis patterns will be about coherence and constraint, apply within a coherent subsystem,
within a layer of the 3-tier architecture, rather than between them. Analysis patterns must apply
within the business services layer of code, help you to get the functionality of a system right.

Analysis patterns must help you integrate concerns, help you to specify the coupling between
business entities, to tighten the constraints as far as possible, so that these objects remain
consistent one with another.

So broadly, one might say: ‘Apply design patterns to loosen the interfaces between
subsystems. Apply analysis patterns to discover and specify the constraints within a
subsystem.’

33.9 More of what analysts need from patterns

We started by suggesting analysts need what we are calling analysis patterns. These will be
similar to design patterns for object-oriented programming, but different in a number of specific
ways. We've already suggested that analysts need:

* patterns for processing persistent data
* patterns that prompt questions
* patterns to do with real-world objects

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 230

* patterns that are logical
« few patterns that feature class hierarchies.

Both design and analysis patterns are concerned with smallish structures of relationships
between elementary components of a system. Analysis patterns tend to be simpler than design
patterns, more abstract in the sense of technology-independent, and they are perhaps more
numerous.

There are a few more things to say about the use of patterns in analysis. Pointing up
differences between design and analysis patterns sheds a new light on both fields of research.

Analysts need only a few patterns that feature recursion

Several of the published design patterns for object-oriented software construction feature
recursive communication between instances of a class. The few analysis patterns that do
feature recursion are interesting, but perhaps not so commonly used. See Footnotes.

Analysts need patterns that model business rules

Design patterns can help you build enterprise applications that are more robust in the face of
changes, while analysis patterns will help you build enterprise applications that are correct in
terms of applying constraints. Both can help you make the step from naive database use
towards more complex database use. See Footnotes.

Analysts need patterns for object behaviour analysis

Design patterns appear in two dimensions of conceptual modelling - entity modelling and
Event Modelling. Confusingly, the Gang of Four refer to patterns in object interactions as
‘behavioural’ patterns. We use the word ‘behaviour’ in a different dimension.

What we call the object behaviour analysis face of the conceptual modelling cube is to do with
specifying the long-term behaviour of persistent objects in the form of life histories or state
machines. There are many analysis patterns in state machines. This is an area in which
analysis patterns work might contribute to design patterns work.

Analysts need patterns that suit database processing

Design patterns help with object-oriented programming technologies. Analysis patterns must
help with systems that use database and transaction processing technologies.

But the distinction between technologies is not as fundamental as it looks. Analysis patterns
may be implemented in object-oriented software. Design patterns may appear in enterprise
applications.

Further reading

The volume ‘Introduction to rules and patterns’ takes up the theme of analysis patterns, or
analysis patterns.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 231

34. Appendix A: very general principles

This book is largely practical. There are a few abstract principles that underlay the discussion of
patterns in this book and its companion.

34.1 Thereis no silver bullet.

A system is composed of many small elementary things (objects, facts, types, states, events and rules)
connected together in various ways. You have to get down to the bottom level. You have to define all
the elementary things and the relationships between them, at a level of description that can be
executed on a computer. There is no way to avoid this. There is no way to avoid the pain.

34.2 A system is composed of connnected things

Everything in a system must be connected to everything within that systems, otherwise there must be
two or more distinct systems. Patterns are about connecting things. There are recognisable and
reusable patterns in how things are related. Patterns that connect just two or three things are the most
reusable, but patterns that connect four or five things are more valuable.

34.3 The cardinality of connections is fundamental

The ‘how manyness’ of things in relation to each other is a fundamental kind of rule that has to be
specified in each view of a system. You define one-to-one, one-to-one-or-zero, and one-to-many
relationships not only between classes (in an entity model), but also between the concurrent objects
affected by an event at a moment in time (in an event model), and between the events that affect an
object over a period of time (in a state machine).

34.4 Most connections are associations

Things are naturally related to each other by association. E.g. A shoulder is related to an arm. An arm
is in turn related to a hand. A husband is related to a wife. A divorce must relate to a previous wedding.

34.5 Persistence undermines compositions

Longevity turns composition relationships into associations. A composition relationship is an
association, but strengthened by the rule that all the related objects live the same length of time. You
can try to relate things by saying one is composed of others. E.g. A hand is composed of a palm, four
fingers and a thumb. A car is composed of an engine, chassis, body, etc.

This is OK over short time, but longevity turns composition relationships into loose associations. You
might lose a finger from your hand, or replace the engine of your car by another. You would better say
a car is associated with a number of parallel aspects, each of them potentially optional or replaceable.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 232

34.6 Persistence undermines type classifications.

Longevity turns subtypes into states of parallel aspects. You can relate things by saying one is a
subtype of another. E.g. a Man is a Human; a Woman is also a Human. Similarly, Leg, Arm, Wing,
Flipper and Tentacle are all subtypes of Limb.

This is OK over short time, but longevity turns apparently fixed types into variables or states. Under
some legal systems, a Human can change Sex. You would better say a Human is associated with a
number of parallel aspects - Sex, Job, etc.

A caterpillar turns into a butterfly. Exactly when in evolutionary history the forelegs of a monkey
became the arms of an ape is an interesting question. You would do better to say a Limb has a number
of optional parallel roles - Supporter, Hanger, Swimmer, Flyer, etc.

34.7 There is more than one paradigm, more than one orientation

Events coordinate interacting objects. Object-orientation and event-orientation are not in competition.
They are orthogonal views of the same phenomena; equally valid and useful views.

34.8 Interaction is different from, more fundamental than,
communication

An event reflects a natural phenomenon. An event model specifies the interactions between concurrent
objects in a formal way. An event model is a directed graph; the event travels along each relationship
in a one-way direction. But an event model does not commit you to any statement about
communication.

Messages are an implementation device. You may select between a number of viable message-
passing strategies. You can choose to send messages along the paths specified in the event model, or
another route. The interaction is more fundamental, more objective, than the messages that make it
work.

34.9 Berrisford’s law of assymetry

Nature abhors perfect symmetry. Assymetry tends to assert itself. If you discover two perfectly
symmetrical things, you will normally destroy the symmetry by placing one over the other, or by
inventing a third thing and relating both to it.

34.10Redundancy is to be avoided - normally

If you say my shoulder is related to my arm, which is in turn related to my hand, there is no need to say
my shoulder is related to my hand - this is implied. But not all redundancy is bad, since introducing
redundancy into one perspective may reduce redundancy in another.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 233

35. Appendix B: On the SmallTalk paradigm

Meyer discusses three technical advantages of the SmallTalk paradigm. These benefits apply
largely to designers working with visual programming environments rather than business
databases, and more to programmers than to analysts.

Conceptual consistency from using a single object-oriented paradigm

Only having to think in one object-oriented dimension is great for the programmer, but teaching
analysts that everything in a real-world enterprise is an object doesn’t help them. We should
teach and encourage analysts to consider all dimensions of the problem they are studying.
They need a framework that clearly separates the different parts and orthogonal views of the
problem domain they have to analyse.

Manipulation of classes at run time
This is great for the programmer, and perhaps for iterative prototyping, but positively
dangerous in full enterprise application development.

Soon after enterprise application is set live, analysts are faced with the need to change the
database structure or the rules that guarantee data integrity while the running system retains
its stored data.

Where run-time manipulation of rules is required, analysts should define the rules as attribute
values of some kind of classification or rule entity type.

Where the business entity model is to change more fundamentally, beware that the stored data
is a valuable company asset. The necessary reprogramming, retesting, retraining and data
conversion are expensive. Analysts need help to tackle such ‘schema evolution’ in a strictly
controlled and methodical way.

Use of class-level methods alongside instance-level methods

Meyer suggests that programmers may find this a mixed blessing. Part of the art is to keep
levels of abstraction apart. Analysts have two orthogonal ways to separate levels of
abstraction.
Instance from type
Analysts do separate type from instance in the business services layer by one-to-many
relationships between persistent classes: say:

Road Type ---< Road ---< Road Use
Programmers may later introduce class-level ‘methods’ to process any event that cascades
down these one-to-many relationships.
Class from metaclass

This is not a separation that Analysts worry about, but there is a sense in which the three-tier
software specification architecture separates class from metaclass. It keeps apart:

* business services layer classes, such as Road and Road Use
* Ul layer classes: such as Window and Button

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 234

+ data services layer classes: such as Table and Commit Unit

Might one view the data services layer classes Table and Commit Unit as metaclasses
representing business entity and business event?

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 235

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 236

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 237

36. Appendix D: Object-oriented analysis in the UK

A tribute to the late Keith Robinson.

It is almost certainly true that the longest continuous object-oriented research and
development programme in the world was started by Keith Robinson in 1977 at Infotech. After
Keith’s death in 1993, the development was carried forward by John Hall of Model Systems
and | (Graham Berrisford) who now work for Seer Technologies.

1977 Keith published a paper in the Computer Journal proposing an object-oriented program
design method for database systems (not called that of course). Keith started from Michael
Jackson’s earlier suggestion that the variables and processes of each object type could and
should be encapsulated in a discrete processing module. An additional idea was to use the
state variable of an object in validation of updates to that object.

1979 1 helped Keith develop his proposals into a 10-day course called 'Advanced System
Design' based on three techniques:

* Relational data analysis: Keith taught this as a technique to decompose the required system
inputs and outputs in what we might now call the Ul layer, into entity types for behaviour
analysis in what we might now call the business services or data services layer.

» Life history analysis: Keith taught this as a technique to discover the behaviour of each entity
type and document it in a state machine diagram. He favoured using regular expressions as
the notation and called them life history diagrams after Jackson | think.

* Object interaction diagrams: Keith invented and taught these to document how objects
exchange messages in order to complete the processing of an event (one event may
synchronously update several objects, and/or need to be validated against the states of
several objects).

Keith’s three-dimensional approach to conceptual modelling is now the norm in modern
development methods. But there was a lot more to his method than notations, and some of the
ideas he taught to do with schema evolution are still ahead of the game.

By the way, many years before Yourdon abandoned data flow diagrams, Keith advised against
top-down decomposition.

1980 Keith's course disappeared when his employers went into liquidation. Not along after
this, Keith helped John Hall to develop an analysis and design method for the UK government.
SSADM version one was built on around database modelling techniques and incorporated
object-based process analysis and design techniques.

Keith and John deemed object interaction diagrams impractical for use by database
programmers, but included life histories as an analysis tool for discovering processes and
business rules. They assumed it was obvious that each life history or state machine could be
transformed into a discrete program module using Jackson’s technique of program inversion
(more widely known then now).

Unfortunately, version two of SSADM was developed by people who did not understand that
life histories were a program design technique. The ground that was lost was not recovered for
some years. And many still believe to this day that the main program specification technique in
SSADM is data flow diagrams!

1983 Keith invented 'effect correspondence diagrams' (hereafter ‘event models’) to replace
object interaction diagrams. The former are simpler than the latter, but equally formal. They

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 238

suppress the detail of message-passing (which might be done in various ways) but show the
essential correspondence between ‘methods’ in different objects affected by one event. The
most wonderful feature of the diagrams is that they transform equally well into either object-

oriented or procedural code.

1986 | tested event models with Keith and John until all were confident they could be
adopted by the UK government. We worked hard to develop rules for mechanically
transforming the state machine view in the life histories into the object interaction view in the
event models. Keith tested these transformations by developing a CASE tool.

At the same time, Keith and | also proposed separating the business services layer from the
data services layer by means of a process-data interface (perhaps coded as SQL views), so
you can generate code directly from the event models, careless of the database designer’s
implementation decisions or the database management system.

All these proposals were adopted by the UK government for SSADM version 4 in 1989. But
they are still not realised today in CASE tools as well as they should be.

1991 Keith worked out a way to detect and document reuse between events in state
machine diagrams. The result is a network in which events invoke superevents, which may
invoke other superevents and so on. This network can be generated by a CASE tool from the
state machines.

Keith knew then that SSADM had all the armoury required to be an object-oriented method for
database systems, save for two problems.

* To avoid the confusion that existed (and still exists) in object-oriented methods between Ul
layer objects and business services layer objects, designers needed to separate the layers of
the 3-tier processing architecture.

* The representation of inheritance in state machines needed further research.

1993 Keith and | wrote the book ‘Object-Oriented SSADM' (published after Keith’s death by
Prentice Hall) mainly to establish two ideas: the importance of separating the layers of the 3-
tier processing architecture, and the use of the superevent technique to maximise economy
and reuse of code within the business services layer.

1994 | published a paper in the Computer Journal that showed how the benefits of
inheritance (reuse and extendibility) can be achieved through modelling state machines for the
'parallel aspects' of a class.

1995 John Hall did most of the hard work necessary to test, demonstrate and establish the
above ideas for adoption by SSADM version 4.2.

1997 This book has examined the practical application of inheritance and polymorphism in
enterprise applications. The companion volume ‘Event modelling for enterprise applications’
introduces improvements in the teaching and usage of event models, e.g. to include constraint
discovery and specification.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 239

37. Appendix C: References

Assenova P. and Johannesson P. [1996] Improving Quality in Conceptual Modelling by the Use of
Model transformations Stockholm University

Boman M. et al. [1993] Conceptual Modelling Stockholm University

Booch G. [1994] Object-Oriented Analysis and Design. Benjamin Cummins

Darwin C. The Origin of Species J M Dent and Sons (1956 edition, pp 56 and 59)
Dawkins R. The Blind Watchmaker

Gamma E. et al. [1995] Design Patterns Addison Wesley

Graham I. [1993] Object-oriented Methods Addison Wesley

Halpin T. [1995] Conceptual Schema and Relational Database Design Prentice Hall
Hoare A. [1986] Communicating Sequential Processes Prentice Hall

Hay D. Data Model Patterns ISBN: 0-932633-29-3

Jackson M. [1975] Principles of Program Design Academic Press

Jackson M. [1994] Software Engineering Journal

Mellor S.J. & Shlaer S. [1988] Object-Oriented Analysis Prentice Hall

Meyer B. [1988] Object-Oriented Software Construction Prentice Hall

Ovum Evaluates: Workflow (1995) Ovum Ltd. London

Palmer J. [1993] ‘Anti-hype’ in Object Magazine. May-June issue.

Partridge C. [1996] Business Objects: Reengineering for Reuse Butterworth Heinemann
Robinson K. & Berrisford G. [1994] Object-Oriented SSADM. Prentice Hall

Berrisford G. [1995a] ‘How the fuzziness of the real world limits reuse by inheritance between business
objects’ Proceedings of OOIS ‘95 conference, Dublin City University.

Berrisford G. [1995b] ‘A review of object-oriented for IS’ Proceedings of OOIS ‘95 conference, Dublin
City University.

Berrisford G. [1996] Database Newsletter Vol. 24 No. 6 Database Research Group Inc.

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 240

Berrisford G. [1997] The Journal of Object-Oriented Programming SIGS publications New York

Berrisford G. & Burrows M. [1994] ‘Reconciling object-oriented with Turing Machines’ Computer
Journal Vol. 37, No. 10

Berrisford G. Burrows M. and Willoughby A. [1997] paper for the OOPS group of the British Computer
Society

The entity modeler

Structural model patterns and transformations Version: 7

Copyright Graham Berrisford 01 Jan 2005
Page 241

