
The functions and capabilities of activity systems v58 page 1

Built by Graham Berrisford from contributions to discussions of ArchiMate in LinkedIn and papers at http://avancier.co.uk

This paper is published under the Creative Commons Attribution-No Derivative Works Licence 2.0. Attribution: You may copy,

distribute and display this copyrighted work only if you clearly credit “Avancier Limited: http://avancier.co.uk” before the start

and include this footnote at the end. No Derivative Works: You may copy, distribute, display only complete and verbatim copies

of this paper, not derivative works based upon it.. For more information about the licence, see http://creativecommons.org

The functions & capabilities of activity systems
 “Your paper hits a number of nails squarely on the head.”

This paper addresses the description of what activity systems do, especially but not

only business systems. The basic idea is that the essential architecture of a business

activity system can be defined thus:

• Business Services (deliver value via output, obtain supplies via input)

• Business Interfaces (channels for external entities to access services)

• Business Processes (sequences of activities)

• Business Components (units, roles, people and machines that perform

activities).

Some say a system has “functions” or its ugly sister “functionality”. Some speak of

“capabilities”. What do they mean? If enterprise architects speak of Business

Functions and Business Capabilities, then they should understand how those

concepts relate to the four more basic concepts, and make sure that meaning is shared

by all those who might read their architecture descriptions.

This paper also compares and contrasts three descriptions of architecture description.

In doing this it addresses questions such as: What general principles and concepts

underpin architecture frameworks? What is the difference between logical and

physical? How can I square ArchiMate with TOGAF?

Contents

A glossary is not enough..2

Encapsulation and nesting of systems..3

Four base concepts in system description..4

Structural and behavioural dimensions of description...5

External and internal levels of description...5

Logical and physical levels of description...6

Categories and domains of activity system..7

The functions and capabilities of activity systems ..8

How the ISEB model maps TOGAF to ArchiMate ...9

Relating TOGAF to ArchiMate to ISEB ...10

Entities and domains in the ISEB reference model ...11

Conclusions and remarks ...12

Aside on Function ..13

Aside on functional requirements and services ...14

Asides on ArchiMate ...15

Asides on what TOGAF says...16

Aside on hierarchical taxonomies..18

The functions and capabilities of activity systems v58 page 2

Built by Graham Berrisford from contributions to discussions of ArchiMate in LinkedIn and papers at http://avancier.co.uk

This paper is published under the Creative Commons Attribution-No Derivative Works Licence 2.0. Attribution: You may copy,

distribute and display this copyrighted work only if you clearly credit “Avancier Limited: http://avancier.co.uk” before the start

and include this footnote at the end. No Derivative Works: You may copy, distribute, display only complete and verbatim copies

of this paper, not derivative works based upon it.. For more information about the licence, see http://creativecommons.org

A glossary is not enough

The architects of activity systems use words loosely in everyday conversation. You

might hear one say:

• The Function of a restaurant is to feed diners (its mission).

• A Function of a restaurant is to sell menu items (its services).

• A Function of a restaurant is to cook a meal (a process), or even…

• A Function of a restaurant is to meet health and safety regulations.

We can collect words used by the architects of activity systems into a glossary. But

glossaries suffer from three problems.

1. Words have fans. The enthusiast’s definition of a word looks OK on its own. But it

turns out you cannot understand how it relates to other words. There are synonyms

and homonyms, super types and subtypes, elementary and composite terms.

2. There is redundancy. If economical = efficient + effective, then do we need

“economical”? Might the glossary be more efficient and effective without it?

3. Examples are nominal and/or vacuous. They look OK at first sight. But it turns out

they have not been tested to ensure they truly distinguish between concepts. One

example can be plausible in many concept definitions. Consider the Armed Forces as

a system. It might be said of this system that:

• Its Mission is defence of the nation.

• Its Aim is defence of the nation.

• Its Function is defence of the nation.

• Its Capability is defence of the nation.

• The Service provided is defence of the nation.

• Its Activity, Work or Job is defence of the nation.

A glossary of words architects commonly use would be interesting, but huge and

incoherent. We might refer to the glossary in real life, but it would be a very poor

basis for an examination in architecture concepts. Architects need something better.

In a really useful glossary, the words would label distinct concepts in a coherent body

of knowledge. We want a reference model that defines concepts that architects (not

stakeholders) ought to understand. It should distinguish concepts from each other,

relate them in a coherent whole, distinguish base entities from subtypes of them, and

distinguish atomic entities from composite views of those entities.

The concepts have to be named. There will always be arguments about the right

words to use. But the really important thing is to ensure the concepts are distinct.

The functions and capabilities of activity systems v58 page 3

Built by Graham Berrisford from contributions to discussions of ArchiMate in LinkedIn and papers at http://avancier.co.uk

This paper is published under the Creative Commons Attribution-No Derivative Works Licence 2.0. Attribution: You may copy,

distribute and display this copyrighted work only if you clearly credit “Avancier Limited: http://avancier.co.uk” before the start

and include this footnote at the end. No Derivative Works: You may copy, distribute, display only complete and verbatim copies

of this paper, not derivative works based upon it.. For more information about the licence, see http://creativecommons.org

Encapsulation and nesting of systems

An activity system transforms inputs into outputs. To external entities, the purpose

and value of the system is in its outputs. To agree the scope of a system (at any level

of granularity), you can define its boundary by inputs consumed and outputs

delivered.

• These might be shown in a context diagram.

Systems can be nested. One person’s system is another’s subsystem. A cruise ship

contains a restaurant, which contains a kitchen, which contains an oven. Each of these

nested entities can be viewed as an encapsulated activity system. The same principles

must be applicable to systems large and small; else architects would have no

repeatable methodology. (Systems can also overlap.)

A principle of Component-Based Design (CBD) and Service-Oriented Architecture

(SOA) is to define outputs as the results of services provided to external entities.

• A service can be documented in a service contract (name, input, output, rules

and non-functional requirements).

The services an external entity is allowed to consume can be defined an interface,

separable from the internal components of the system

• This might be documented in some kind of menu, or service catalogue or

directory, or service level agreement.

Open the box of an encapsulated system and you see the inter-connected components

that transform inputs into outputs.

• This internal structure may be shown as inter-related subsystems in some kind

of goods/service/data flow diagram.

You can also watch the processes that transform inputs into outputs.

• This internal behaviour - these processes – may be listed in some kind of

process map or use case diagram. The steps and flow of each process can be

charted.

Decomposition

System decomposition (into smaller subsystems or components) is a tool of design.

Process decomposition (into shorter steps) is a tool of requirements analysis. Both

kinds of decomposition have the effect of dividing external services (requested by

external entities) into sub-ordinate internal services (and perhaps also dividing longer

external interfaces into shorter internal interfaces).

Composition

The reverse – composition of fine-grained processes and components into coarser-

grained processes and systems - is a tool for managing complexity. This tool is

essential to any enterprise architect who hopes to describe a whole enterprise as a

system – which is indeed an implication in TOGAF.

For more on this topic: http://avancier.co.uk. > Library > Architecture Concepts > “Granularity”

The functions and capabilities of activity systems v58 page 4

Built by Graham Berrisford from contributions to discussions of ArchiMate in LinkedIn and papers at http://avancier.co.uk

This paper is published under the Creative Commons Attribution-No Derivative Works Licence 2.0. Attribution: You may copy,

distribute and display this copyrighted work only if you clearly credit “Avancier Limited: http://avancier.co.uk” before the start

and include this footnote at the end. No Derivative Works: You may copy, distribute, display only complete and verbatim copies

of this paper, not derivative works based upon it.. For more information about the licence, see http://creativecommons.org

Four base concepts in system description

This paper addresses the activity of a system (not architecture precursors: business

drivers, strategies, goals, stakeholder concerns, principles, regulations etc.).

The basic idea is that, since a system delivers value to customers by transforming

inputs into outputs, the essential architecture of a system can be defined using four

base concepts. A restaurant provides a simplistic way to illustrate this idea.

System Restaurant (perhaps a subsystem of a Hotel or a Cruise Ship)

Mission Feed diners.

Services Hot dinners. Cold snacks. Drinks.

Processes Order. Cook. Serve.

Components Waiter. Chef. Oven.

Interfaces A la carte menu. Table d’hote menu. Today’s specials.

Every activity system can be described as a set of inter-related components which

execute processes to deliver services, ideally through pre-defined interfaces. For

coherence, these four base concepts should be defined in relation to each other.

Concept Definition

Service Something a customer wants* from the system, or the system wants from a
supplier. A result of processes, but defined in a service contract without
reference to the internal logic of processes used.

Process What happens. A logical sequence of activities that ends up delivering a
service at some level of granularity. Executed by components.

Component A subsystem that does work, executes activities. A cohesive group of
related but distinctly invokable activities, encapsulated behind an interface.

Interface A channel for a consumer to access a list of services. A facade that hides
the workings of internal processes and components.

For more on this topic: http://avancier.co.uk. > Library > Architecture Concepts > “Modularity”

Note that the elementary particles of an activity system are indivisible actions and

materials. And in an information system, the particles are executable instructions and

data items. The focus here is on the atoms and molecules made from those elementary

particles.

Aside: * What about waste? A system may produce products and by-products. Some

by-products can be sold (are wanted and requested via services). Some by products

are pure waste (are unwanted, and never requested via services). If a system produces

waste, then it may be stored forever inside the system, or may be output from the

system. Either way, it is not well described as a wanted output of any service

requested by an external entity. Waste might better be documented as a side effect of

services (that is, in the post-conditions of service contracts). Ideally, the cost of

storing or exporting the waste produced by each service should be quantified in its

service contract, and this should be accounted for in the price of that service. Not

doing this (as in old nuclear power stations) leads to an over-optimistic system design

and under pricing of services.

The functions and capabilities of activity systems v58 page 5

Built by Graham Berrisford from contributions to discussions of ArchiMate in LinkedIn and papers at http://avancier.co.uk

This paper is published under the Creative Commons Attribution-No Derivative Works Licence 2.0. Attribution: You may copy,

distribute and display this copyrighted work only if you clearly credit “Avancier Limited: http://avancier.co.uk” before the start

and include this footnote at the end. No Derivative Works: You may copy, distribute, display only complete and verbatim copies

of this paper, not derivative works based upon it.. For more information about the licence, see http://creativecommons.org

Structural and behavioural dimensions of description

In activity systems, things do work by performing actions on other things. In UML,

the things and activities are categorised as structural and behavioural, along the lines

shown below.

Structural (persistent things) Behavioural (transient activities)

Entities Events

Components Processes

Interfaces Services

ArchiMate divides materials between processors (active structure) and processed

(passive structure). The next table shows some ways to articulate this distinction.

Active Structure Behaviour Passive Structure

Actors Act on Stages

Machines Consume Materials

Computers Process Data

People Read Books

Three asides: This paper does not address passive structure (materials or data). A

component can be active in one activity and passive in another. And don’t assume the

active-passive distinction corresponds to the subject-object distinction in grammar: as

the following counter examples show.

Passive Subjects Verb Active Objects

Materials Feed Machines

Service Contracts Encapsulate Processes

Books Help People

For more on this topic: http://avancier.co.uk. > Library > “ArchiMate and TOGAF”

External and internal levels of description

The scope or boundary of a system is a subjective decision made by one or more

observers. One person’s external entity is another’s internal component.

But once a system boundary has been decided for design purposes, the external-

internal distinction can be used (as in ArchiMate) to organise our four base concepts

in a two-by-two overarching model, thus.

ArchiMate’s overarching model of activity system concepts

 Behavioural Structural

External Service Interface

Internal Process Component

This overarching model is applied later in “Relating TOGAF to ArchiMate to ISEB “.

After the requirements of a system are crystallised by defining the Services it should

offer, then mapping external to internal is sometimes called realisation, and mapping

behaviour to structure is sometimes called construction.

For more on this topic: http://avancier.co.uk. > Methodology > “Underpinning concepts”

The functions and capabilities of activity systems v58 page 6

Built by Graham Berrisford from contributions to discussions of ArchiMate in LinkedIn and papers at http://avancier.co.uk

This paper is published under the Creative Commons Attribution-No Derivative Works Licence 2.0. Attribution: You may copy,

distribute and display this copyrighted work only if you clearly credit “Avancier Limited: http://avancier.co.uk” before the start

and include this footnote at the end. No Derivative Works: You may copy, distribute, display only complete and verbatim copies

of this paper, not derivative works based upon it.. For more information about the licence, see http://creativecommons.org

Logical and physical levels of description

TOGAF makes much of the distinction between logical components (architecture

building blocks) and physical components (solution building blocks), both of which

are defined by the services they offer.

TOGAF’s (implicit) overarching model of activity system concepts

Physical components Logical components Services

A component is an encapsulated subsystem, a processing unit, bounded by the

services it offers. A logical component is an ideal, candidate or potential component;

it is defined by external services and internal processes; it is organisation, vendor and

technology neutral. A physical component is real; it can do work; it has the physical

resources it needs; it is organisation, vendor or technology specific.

TOGAF proposes you define services and logical components in phases B, C and D

of the method. You then map the logical components to physical components in phase

E, where you choose either to buy or build the physical components.

E.g. suppose your sales Organisation unit require 20 services from a candidate logical

component. It could be a human activity system, but you envisage it as candidate

computer application. You call it a customer relationship management system.

Then, to realise that logical component, you choose a specific physical application

(say Salesforce.com) because it offers 18 of the 20 of the required services. It also

offers 5 other services you never thought to ask for, which are “opportunities”.

Aside: don’t forget to consider the data, lest it turn out the new system stores the

same data already stored by other systems belonging to other Organisation units –

leading to disintegrity issues and application integration challenges.

TOGAF applies the same overarching model to three activity system “domains”.

Entities

Domains

Physical components Logical components Services

Business Organisation units Business functions Business services.

Applications Physical application

components

Logical application

components

I.S services

Technology Physical technology

components

Logical technology

components

Platform services

TOGAF even applies the same pattern to the passive structures of data (though data

event or enquiry would be better here than data entity).

Data Physical data components Logical data components Data entities

TOGAF’s (implicit) overarching model is different from ArchiMate’s overarching

model. In ArchiMate and elsewhere, logical means external requirements expressed as

services, and physical means the internal realisation of the external requirements as

processes executed by components. Some TOGAF authors appear to mean that also.

For more on this topic: http://avancier.co.uk. > Library > Architecture Concepts > “Logicality”

The functions and capabilities of activity systems v58 page 7

Built by Graham Berrisford from contributions to discussions of ArchiMate in LinkedIn and papers at http://avancier.co.uk

This paper is published under the Creative Commons Attribution-No Derivative Works Licence 2.0. Attribution: You may copy,

distribute and display this copyrighted work only if you clearly credit “Avancier Limited: http://avancier.co.uk” before the start

and include this footnote at the end. No Derivative Works: You may copy, distribute, display only complete and verbatim copies

of this paper, not derivative works based upon it.. For more information about the licence, see http://creativecommons.org

Categories and domains of activity system

People do think and speak separately about:

• Human activity systems

• Data processing (information and application) systems

• Computer or IT platform systems

• Other kinds of technological, biological or chemical system.

Dividing an enterprise activity system into different categories of subsystem helps

us to divide a massively complex system description into more manageable elements.

This table illustrates a possible separation of concerns, akin to that in TOGAF.

Entity class

Subsystem

Component Process Service

Human Business Function Business Process Business Service

Applications Application Use Case I.S Service

Infrastructure Platform technology (known only to Vendor) Platform Service

Note that the lines between these domains are blurred, and can be crossed. Before

computers, data processing systems were business functions. Since the 1960s, the data

processing clerks were gradually replaced, as business functions were turned into

automated information systems, or applications.

• Today’s application was yesterday’s business function

• Today’s platform technology was yesterday’s generic application

• Today’s data structure was yesterday’s hard-coded procedure.

And one system may span several domains. E.g. SAP (love them or hate them) sell an

enterprise system. It contains physical application components, data components and

technology components. And in so far as it automates business processes, you might

say contains some elements of business architecture also.

Underpinning ideas are not always explicit

The idea that an application is an automated business function used to be

commonplace. It is still implicit in TOGAF, but, like much of the body of knowledge

TOGAF was built on, it is no longer widely understood.

TOGAF does say explicitly that an IS (aka Application) Service is a Business Service,

but leaves implicit that an Application Component is a Business Function.

Whereas ArchiMate has an explicit overarching model (of Service, Component,

Process and Interface), TOGAF's overarching model (of Service, Logical Component

and Physical Component) is revealed only by analysis.

The functions and capabilities of activity systems v58 page 8

Built by Graham Berrisford from contributions to discussions of ArchiMate in LinkedIn and papers at http://avancier.co.uk

This paper is published under the Creative Commons Attribution-No Derivative Works Licence 2.0. Attribution: You may copy,

distribute and display this copyrighted work only if you clearly credit “Avancier Limited: http://avancier.co.uk” before the start

and include this footnote at the end. No Derivative Works: You may copy, distribute, display only complete and verbatim copies

of this paper, not derivative works based upon it.. For more information about the licence, see http://creativecommons.org

The functions and capabilities of activity systems

Business Function as logical Component

In TOGAF, a Business Function is a bounded unit of business capability. It is an

encapsulated component that delivers business services - a container of business

processes (or partial processes) that are logically related, and for which you can define

the skills needed.

Successive composition of elementary functions into composite functions produces a

Business Function hierarchy - a logical composition structure - a structural model akin

to a management hierarchy, but devoid of managers or resources. A bottom-level

Business Function may be a role, which may or may not be supported by IT. If it is a

purely clerical role (does nothing but data processing) then it might be automatable as

a software application.

Organisation unit as physical Component

When you allocate managers and resources to execute the processes of a Business

Function, then you have something new, an Organisation. To make an enterprise

work, you can devise various management hierarchies. You may divide the

Organisation by customer, by location, by product (or indeed by Business Function).

But you still have your logical Business Services, Business Functions and roles,

which should be more stable than the physical Organisation structure.

For more on this topic: http://avancier.co.uk. > Methodology > “Business Architecture Rationalisation”.

Capability conceived as broad Business Function

The idea of defining a Business Function as an organisation-independent unit of a

business is very old. The concept of Capability is a relative newcomer, which has

become fashionable through cross-organisational capability-based planning. But does

the new word add a new concept?

In TOGAF, a Capability is a macro-level Business Function. In the TOGAF meta

model, Capability is not related to other architectural entities - surely because to

connect it would reveal it has all the same relationships as a Business Function.

Capability realised as Organisation

A colleague says: “I think of a Capability as a collection of skills, resources, processes

and systems, brought together from one or more parts of the enterprise or extended

enterprise, to meet a business outcome.”

OK. So you set out to develop an enterprise architecture (EA) Capability. You define

an EA Business Function, along with the processes, skills and roles required. Then, to

realise it, you must add objectives, a budget, a manager, and employees with the skills

needed to play roles and perform processes. So, the result (your managed EA team)

has all the properties you would associate with an Organisation unit.

Capability-based planning is a process that starts with a high-level Business Function,

then extends it for implementation to become an Organisation. The Organisation for a

The functions and capabilities of activity systems v58 page 9

Built by Graham Berrisford from contributions to discussions of ArchiMate in LinkedIn and papers at http://avancier.co.uk

This paper is published under the Creative Commons Attribution-No Derivative Works Licence 2.0. Attribution: You may copy,

distribute and display this copyrighted work only if you clearly credit “Avancier Limited: http://avancier.co.uk” before the start

and include this footnote at the end. No Derivative Works: You may copy, distribute, display only complete and verbatim copies

of this paper, not derivative works based upon it.. For more information about the licence, see http://creativecommons.org

Capability is likely to be cross-organisational. It may also be temporary. But it is still

an Organisation, with all the properties you would expect an Organisation to have.

Do we need Capability?

Sometimes Capability is a discrete entity, as in the TOGAF meta model. But this

discrete entity seems indistinguishable from a high-level Business Function – one that

straddles organisation units in different lines of business. Smetimes Capability is a

composite view spanning entities including Business Function and Organisation. Until

we agree which more atomic entities a Capability is composed of, it remains a fluffy

management consulting concept, not great material for examination questions.

Capability as in “capability maturity model” might be the same thing, or might be different

How the ISEB model maps TOGAF to ArchiMate

The ISEB reference model (for its certificates in Enterprise and Solution Architecture)

was not built as a creative act, or new architecture framework. It extracts the essence

of various frameworks (CBD, SOA, ArchiMate, TOGAF, Business Motivation

Model, etc.) and generalises them. At the start are two tables that relate TOGAF to

ArchiMate. The tables correspond, so Service and Component have the same meaning

in both tables.

The first table shows the 4 base concepts in ArchiMate’s overarching model. The term

Function is eschewed because it gets confused with TOGAF’s use of the term.

The second table shows the 6 core architectural entities in the TOGAF meta model.

The separation of Service from Component is fundamental. TOGAF uses Service and

Component in all four domains, and uses them in pretty much the same way as

ArchiMate does.

The wording between the two tables would be clearer as: “This reference model is

based on the notion (used in ArchiMate) that these same four concepts appear in each

of three architecture domains. This can be illustrated by showing how TOGAF gives

two of the concepts (Service and Component) more specific names in each domain.”

The functions and capabilities of activity systems v58 page 10

Built by Graham Berrisford from contributions to discussions of ArchiMate in LinkedIn and papers at http://avancier.co.uk

This paper is published under the Creative Commons Attribution-No Derivative Works Licence 2.0. Attribution: You may copy,

distribute and display this copyrighted work only if you clearly credit “Avancier Limited: http://avancier.co.uk” before the start

and include this footnote at the end. No Derivative Works: You may copy, distribute, display only complete and verbatim copies

of this paper, not derivative works based upon it.. For more information about the licence, see http://creativecommons.org

Relating TOGAF to ArchiMate to ISEB

This paper compares and contrasts three descriptions of architecture description, by

reference to underpinning ideas drawn from system theory, and by reference to three

overarching (meta meta) models, presented for comparison below.

This table shows the essence of TOGAF’s meta model of activity system description.

Essence of TOGAF meta model

Entity class

Domain

Component Process Service Interface

Business Business Function & Role

Organisation Unit & Actor

Business Process Business Service -

Application Logical App. Component

Physical App. Component

- I.S. Service -

Technology Logical Tech. Component

Physical Tech. Component

- Platform Service -

Notice TOGAF doesn’t use the concept of Interface in any domain. And it uses the

concept of Process only in the business domain. Note also TOGAF divides

components into logical components (architecture building blocks) and physical

components (solution building blocks).

This table shows the essence of ArchiMate’s meta model of system description.

Essence of ArchiMate meta model

Entity class

Layer

Component Process Service Interface

Business Role & Actor Business Process /
Function

Business Service Business Interface

Application Application Component Application Function Application Service Application Interface

Infrastructure Node & Device & System
Software

- Infrastructure Service Infrastructure Interface

Notice ArchiMate does not address the internal processes of infrastructure

components, which are the concern of the technology vendor.

The ISEB reference model implies the four base concepts in ArchiMate’s meta model

should appear in each architecture domain, and uses common-place and not-too-

ambiguous terms for those concepts where they appear.

This table shows the essence of the ISEB reference model (at least, in this

interpretation for comparison with the tables above).

Essence of ISEB reference model (an interpretation)

Entity class

Layer

Component Process Service Interface

Business Organisation Unit & Actor

Business Function & Role

Business Process Business Service Business Channel and SLA

Applications Application Use Case

(main & other paths)

Use Case

(service contract)

User Interface & Menu

Software Application Component Automated Service

(server-side software)

Automated Service

(service contract)

Service Directory &
Catalogue

Infrastructure Technology - Platform Service API

The functions and capabilities of activity systems v58 page 11

Built by Graham Berrisford from contributions to discussions of ArchiMate in LinkedIn and papers at http://avancier.co.uk

This paper is published under the Creative Commons Attribution-No Derivative Works Licence 2.0. Attribution: You may copy,

distribute and display this copyrighted work only if you clearly credit “Avancier Limited: http://avancier.co.uk” before the start

and include this footnote at the end. No Derivative Works: You may copy, distribute, display only complete and verbatim copies

of this paper, not derivative works based upon it.. For more information about the licence, see http://creativecommons.org

Entities and domains in the ISEB reference model

The ISEB reference model (for its certificates in Enterprise and Solution Architecture)

is not a general-purpose glossary.

For a copy of the ISEB reference model, find “PDF downloads” at http://www.bcs.org/category/10521

Some entries in the ISEB reference model can reasonably be regarded as core or

atomic architectural entities. If there was a meta model, it might look like this.

Business

Data

Applications

Infrastructure

Technology Comp’nt

Service Contract

Use Case Application Comp’nt

Platform Service Platform Comp’nt

Data App

Business Service Business Function Org. Unit

Role Actor

Aim
Goal/Objective/Requirement

Business Process

Location

Output

Input

Rule

Automated Service

Broker AppBusiness Service

Data Service

User App

Data Structure

Data Store

Data Entity

Data Flow

Network Computer

Business

Data

Applications

Infrastructure

Technology Comp’nt

Service Contract

Use Case Application Comp’nt

Platform Service Platform Comp’nt

Data App

Business Service Business Function Org. Unit

Role Actor

Aim
Goal/Objective/Requirement

Business Process

Location

Output

Input

Rule

Automated Service

Broker AppBusiness Service

Data Service

User App

Data Structure

Data Store

Data Entity

Data Flow

Network Computer

For more on this topic: http://avancier.co.uk. > Methodology > “Architecture Meta Models”

Not all relationships can be shown. The bigger enclosing boxes are either composites

or super types (with a white triangle). Use case, automated service and platform

service embrace both a service and the highest-level process that delivers the service

(though the nested services and processes are detailed separately).

The functions and capabilities of activity systems v58 page 12

Built by Graham Berrisford from contributions to discussions of ArchiMate in LinkedIn and papers at http://avancier.co.uk

This paper is published under the Creative Commons Attribution-No Derivative Works Licence 2.0. Attribution: You may copy,

distribute and display this copyrighted work only if you clearly credit “Avancier Limited: http://avancier.co.uk” before the start

and include this footnote at the end. No Derivative Works: You may copy, distribute, display only complete and verbatim copies

of this paper, not derivative works based upon it.. For more information about the licence, see http://creativecommons.org

Conclusions and remarks

To understand EA frameworks it helps to know that most have some roots in ways to

model business processes and business data, techniques used in the analysis and

design of business data processing systems. They also have some roots in ideas

underpinning CBD and SOA, which became fashionable in the 1990s.

In fact, it is probably impossible to understand most EA frameworks unless you

understand something of the roots above, notably:

• Systems and subsystems (components) can and should be encapsulated behind

services and interfaces.

• Components and processes are different things - at right angles to each other.

• Components and processes are recursively composable and decomposable.

People who aren’t interested in the application of these ideas surely won’t feel

comfortable with the engineering details of an EA framework like TOGAF, or with

ArchiMate. And that will include most business stakeholders!

We can and do divide activity systems into different kinds and domains, and speak

separately about them. There are very important differences to be understood. But

there are also similarities that architects should understand, even if their stakeholders

don’t. All are “activity systems”. People use the same basic ideas to describe all

activity systems, just different words.

The work to turn business data processing systems into software proved to be

very complex and difficult. Software procedures must be precise and

unambiguous to a much greater degree than clerical procedures. In formalising

their art, software architects learnt to separate services from processes, and

separate interfaces from components. Yet business architects also make

similar separations in human activity systems. What is a call centre but an

interface, a channel to services delivered by back office components?

Perhaps architects describing activity systems need four levels of vocabulary, say:

• For all kinds of system: a simple overarching model with only 4 concepts.

• For the traditional four enterprise architecture domains: a more complex four-

part meta model with a vocabulary of 40 words.

• A structured reference model that helps architects to use the meta model in

solving practical problems, and in examinations. Say 400 words.

• A general-purpose glossary containing words architects may have to use with

stakeholders. Say 4,000 words.

The ISEB reference model is intended to help architects understand the basic ideas of

activity systems, so they can manipulate them effectively in different contexts. It has

to use words that a) examiners can use without ambiguity, and b) do not depart too far

from popular approaches like ArchiMate, TOGAF and BMM. It is not an aim that

architects use the same vocabulary in talking to stakeholders.

Communication with stakeholders is another matter altogether.

The functions and capabilities of activity systems v58 page 13

Built by Graham Berrisford from contributions to discussions of ArchiMate in LinkedIn and papers at http://avancier.co.uk

This paper is published under the Creative Commons Attribution-No Derivative Works Licence 2.0. Attribution: You may copy,

distribute and display this copyrighted work only if you clearly credit “Avancier Limited: http://avancier.co.uk” before the start

and include this footnote at the end. No Derivative Works: You may copy, distribute, display only complete and verbatim copies

of this paper, not derivative works based upon it.. For more information about the licence, see http://creativecommons.org

Aside on Function

Business Function has a strong place in the ISEB reference model, but “this reference

model eschews the term function except within the term business function”. In other

words, Function it is not a core architectural entity or an examinable concept.

Remember the reference model is not meant to be a general-purpose glossary. It is to

define distinct concepts that an architect ought to understand. The purpose of defining

Function more forcefully or formally ought to be to add a new concept that could

reasonably appear in an examination question.

In conversation, one might say a Function of a restaurant is to feed diners (a mission),

to sell menu items (its services), to cook a meal (a process), or even to meet health

and safety regulations.

Curiously, a Business Function is another thing altogether. It groups activities of the

business into a logical component by some cohesion criteria. This seems the least

natural language interpretation of the word.

So oddly, the technique of “functional decomposition” is not process decomposition

(as you might think) it is component decomposition. (If you haven’t twigged yet that

there are two different approaches to system decomposition, then you probably

haven’t yet got the distinction between a process and a component.)

Consider what Function means in the following sources:

• In Information Engineering, a Business Function is a logical subdivision of an

enterprise, which encapsulates some required activities or processes.

• In TOGAF’s Business Architecture, a Business Function is the same, a logical

component which offers business services and encapsulates processes.

• In TOGAF’s TRM, the term function means a platform service that can be

invoked in current technologies, but is not yet encapsulated behind a properly-

defined service contract (or API).

• In SSADM (an old UK methodology), a function definition is what people call

a “use case” today. In ArchiMate also: an application function is probably best

defined as a use case. A use case is a process (in a system) that is used by a

user; it is defined in terms of a process flow wrapped up in a service contract.

• In mathematics and in programming languages, a function often corresponds

to a process – sometimes exposed for use as an external service, sometimes

hidden as a private internal process.

In every day conversation, we can and do use Function to mean a purpose, service or

process, and sometimes other things. And we sometimes use it to mean a composite of

two or more distinguishable concepts.

We can speak freely of Functions (aka Functionality) because the term is so flexible.

The listener does not need to read the term as meaning something precise, and

because we never meant it to be precise, that is OK.

On the other hand, ambiguity can lead to misinterpretation, and it makes Function a

hostage to fortune in any meta model. Because Function is commonly used in various

ways, it sits uncomfortably attached to any one concept in a meta model. And adding

The functions and capabilities of activity systems v58 page 14

Built by Graham Berrisford from contributions to discussions of ArchiMate in LinkedIn and papers at http://avancier.co.uk

This paper is published under the Creative Commons Attribution-No Derivative Works Licence 2.0. Attribution: You may copy,

distribute and display this copyrighted work only if you clearly credit “Avancier Limited: http://avancier.co.uk” before the start

and include this footnote at the end. No Derivative Works: You may copy, distribute, display only complete and verbatim copies

of this paper, not derivative works based upon it.. For more information about the licence, see http://creativecommons.org

the term can tend to obscure what can and should be clear distinctions between

Service, Interface, Process and Component.

Perhaps we could define it thus: “Function is a loose term that is used to mean one or

more of the following:

• The mission of a system

• What is wanted of a system; crystallisable as the output and/or post conditions of a

required Service.

• What is done by a system; a Process that is recognisable by Service consumers.

• A subsystem; a logically-related group of activities. E.g. a Business Function is a

logically-related group of activities with no manager or resources.

That would be overly elaborate. Perhaps the definition should be reduced to “The

term Function may be used as label for a specific mission, aim, service, or process; or

for a logical component (as in Business Function); or for a composite view that

embraces two or more of those entities.”

Until we agree which atomic entities a Function corresponds to or is composed of, it

remains a fluffy concept, not great material for examination questions. Currently, the

term adds noise – more for students to read and worry about – rather than a distinct

concept. It could in fact be dropped from the model without any harm done.

Aside on functional requirements and services

There are many ways to capture the requirements of a system. We might document a

requirements catalogue, a data model, some business process models and some use

case definitions. Their content will overlap and tend to duplicate information.

A requirements catalogue is commonly divided into functional and non-functional

requirements. (Many technical infrastructure architects resent this, since the non-

functional are all they care about - are to them functional.)

A system use case is a process in which system users are engaged to some end – some

purpose - some goal – to deliver some kind of service. A use case definition template

describes a process flow and wraps it up inside a service contract.

Many requirements can be, perhaps should be, captured in service contracts.

• Functional requirements appear in services’ signatures and semantics (the input

and output, and the rules by which input is transformed into output).

• Non-functional requirements appear as qualitative measures of those services.

Functional in this context is vaguely related the everyman use of Function above.

The functions and capabilities of activity systems v58 page 15

Built by Graham Berrisford from contributions to discussions of ArchiMate in LinkedIn and papers at http://avancier.co.uk

This paper is published under the Creative Commons Attribution-No Derivative Works Licence 2.0. Attribution: You may copy,

distribute and display this copyrighted work only if you clearly credit “Avancier Limited: http://avancier.co.uk” before the start

and include this footnote at the end. No Derivative Works: You may copy, distribute, display only complete and verbatim copies

of this paper, not derivative works based upon it.. For more information about the licence, see http://creativecommons.org

Asides on ArchiMate

Is Business Function a structural or behavioural concept?

Generally speaking, persistent entities and components are called structural. Transient

events and processes are called behavioural. But the line between behavioural and

structural is not universally agreed.

A class in UML is an encapsulated collection of processes that deliver services. It is a

container of processes. We might argue about special cases, but primarily, a class is a

component. And a class diagram showing the structure in which those components are

related is called a structural model in UML. It is a structure imposed over the

activities of the software system.

• Yet in UML, a use case diagram which shows a system as an encapsulated

collection of process is called a behavioural model. Surely a mistake! The

diagram is a list or structure of processes, it is not a process model.

A Business Function in TOGAF is an encapsulated collection of business processes

that deliver business services. It is a container of business processes. We might argue

about special cases, but primarily, a Business Function is component (a logical one).

So, a Business Function decomposition hierarchy is a structural model. It is a

structure imposed over the activities of the enterprise system.

• Yet Business Function appears in the behavioural column of the ArchiMate

meta model. Surely a mistake!

Is the term Function necessary in ArchiMate?

In TOGAF and elsewhere, a Business Function is a logical component, akin to an

Organisation unit. ArchiMate places Business Process/Function where you might

expect only business process.

In common use, an Application Function is a use case, a process. ArchiMate has

Application Function where you might expect Application Process.

I believe it would be clearer if Business Process/Function was called just Business

Process, and Application Function was called use case.

What is a Collaboration in ArchiMate?

In ArchiMate, the concept of collaboration appears to be structural - more persistent

than a transient interaction between components (a process). Though it is presumably

more transient than those persistent components that engage in the collaboration.

Is it an interface agreed by two components? Is that really a pair of interfaces? One

for each component, which defines the services one component offers to the other? Or

is it a data flow or other data structure, which is to be written by one component and

read by the other?

Is it a contract between two persistent entities? Does it define the rules by which the

two entities will interact over a period of time to perform some business processes?

What does that tell us that defining each cooperative process would not tell us? Is it

simply the list of those processes in which the two parties are both involved?

The functions and capabilities of activity systems v58 page 16

Built by Graham Berrisford from contributions to discussions of ArchiMate in LinkedIn and papers at http://avancier.co.uk

This paper is published under the Creative Commons Attribution-No Derivative Works Licence 2.0. Attribution: You may copy,

distribute and display this copyrighted work only if you clearly credit “Avancier Limited: http://avancier.co.uk” before the start

and include this footnote at the end. No Derivative Works: You may copy, distribute, display only complete and verbatim copies

of this paper, not derivative works based upon it.. For more information about the licence, see http://creativecommons.org

(And by the way, a real business contract may say very little about the business

processes to be performed. Rather, it says a great deal about how one or other party

will get out of the contract if the cooperation is deemed to be failing in some way!).

Asides on what TOGAF says

Enterprise architecture is about describing an enterprise as a system. What is the

scope of the enterprise, the system, that you describe? That is a judgement call made

at an early stage in any architecture development method.

A key output of TOGAF is the Architecture Definition Document – which is intended

to provide a formal description of an enterprise system. The table shows key

elements you’d expect to find in a completed Architecture Definition Document.

Entity class

Domain

Physical component Logical component Service

Business Organisation unit Business function Business service

Applications Physical application

component

Logical application

component

I.S. service

Data Physical data

component

Logical data component Data entity

Technology Physical technology

component

Logical technology

component

Platform service

The focus here is on the business domain.

TOGAF says: Enterprise architecture is a horizontal function that looks at enterprise-

level optimization and service delivery. Capability-based planning and enterprise

architecture are mutually supportive.

Phase A: A business capability assessment is used to define what capabilities an

organization will need to fulfil its business goals and business drivers. A business

capability can be thought of as a synonym for a macro-level business function.

Also: Function describes units of business capability.

[TOGAF inherits Business Function from Information Engineering and the like, but

inherits Capability from Capability-Based Planning. It hasn’t quite got the nerve or

the will to modify their two vocabularies until they are integrated.]

Phase B: Identifies the key business functions within the scope of the architecture,

and maps those functions onto the organizational units within the business.

Target Business Architecture, Version 1.0 (detailed), including:

• Business goals and objectives — for the enterprise and each organizational unit

• Business services — the services that the enterprise and each enterprise unit

provides to its customers, both internally and externally

• Business functions — a detailed, recursive step involving successive

decomposition of major functional areas into sub-functions

• Organization structure — identifying business locations and relating them to

organizational units

The functions and capabilities of activity systems v58 page 17

Built by Graham Berrisford from contributions to discussions of ArchiMate in LinkedIn and papers at http://avancier.co.uk

This paper is published under the Creative Commons Attribution-No Derivative Works Licence 2.0. Attribution: You may copy,

distribute and display this copyrighted work only if you clearly credit “Avancier Limited: http://avancier.co.uk” before the start

and include this footnote at the end. No Derivative Works: You may copy, distribute, display only complete and verbatim copies

of this paper, not derivative works based upon it.. For more information about the licence, see http://creativecommons.org

• Correlation of organization and functions — relate business functions to

organizational units in the form of a matrix report.

• Business roles, including development and modification of skills requirements

• Business processes, including measures and deliverables

• Business data model [no explanation of what it is or what to do with it]

Organization [unit]: a self-contained unit of resources with line management

responsibility, goals, objectives, and measures. Organizations may include external

parties and business partner organizations.

Business Function: delivers business capabilities closely aligned to an organization,

but not necessarily explicitly governed by the organization.

[“governed” surely means “managed”. Managers monitor and control organisations

and processes at run time. Governance is more to do with the addition and removal of

business services and business functions at design time.]

The term ‘‘function’’ is used to describe a unit of business capability at all levels of

granularity, encapsulating terms such as value chain, process area, capability, business

function, etc. Any bounded unit of business function should be described as a

function.

[Bounded unit = encapsulated component. The boundary is the interface, containing

the business services offered.]

Business Service: supports business capabilities through an explicitly defined

interface and is explicitly governed by an organization. Business services support

organizational objectives and are defined at a level of granularity consistent with the

level of governance needed. A business service operates as a boundary for one or

more functions.

[functions here could be business functions or business processes.]

The granularity of business services is dependent on the focus and emphasis of the

business (as reflected by its drivers, goals, and objectives). A service in Service

Oriented Architecture (SOA) terminology (i.e., a deployable unit of application

functionality) … may implement or support a business service.

[In ISEB terms, by successive process decomposition, the coarse-grained business

services/processes are elaborated until they reveal application use cases, then

automated application services, then platform services.]

Capability: an ability that an organization, person, or system possesses. Capabilities

are typically expressed in general and high-level terms and typically require a

combination of organization, people, processes, and technology to achieve. For

example, marketing, customer contact, or outbound telemarketing.

[Let me analyse that]

Capabilities are typically expressed in general and high-level terms. For example,

marketing, customer contact, or outbound telemarketing.

[Those sound like business functions. Then…]

The functions and capabilities of activity systems v58 page 18

Built by Graham Berrisford from contributions to discussions of ArchiMate in LinkedIn and papers at http://avancier.co.uk

This paper is published under the Creative Commons Attribution-No Derivative Works Licence 2.0. Attribution: You may copy,

distribute and display this copyrighted work only if you clearly credit “Avancier Limited: http://avancier.co.uk” before the start

and include this footnote at the end. No Derivative Works: You may copy, distribute, display only complete and verbatim copies

of this paper, not derivative works based upon it.. For more information about the licence, see http://creativecommons.org

“and typically require a combination of organization, people, processes, and

technology to achieve.”

[In other words, things are added to the Capability to realise it. They are not part of

the initial definition. Capability is first defined as a high-level Business Function, then

elaborated, gathering other architectural entities as it grows. Eventually, probably, it

turns into a cross-organisational organisation unit, with all the resources need to do

work.]

Capabilities are engineered/generated taking into consideration various dimensions

that straddle the corporate functional portfolios.

[This surely means straddle the lines-of-business in the physical organisation

structure, rather than the functions in the logical business function structure.]

Building Block

In TOGAF, the term Building Block appears to have two meanings. Sometimes it is

an encapsulated component. Sometimes it is any architectural entity, including

services, goals and locations. The term Building Block is eschewed in the ISEB

reference model, and could be dropped without harm.

Aside on hierarchical taxonomies

A formal(ish) meta model of concepts is one thing; a glossary we might use in

practice with stakeholders is another.

How do people manage the challenge of talking about the same or very similar things

but at different levels of abstraction? People sometimes use three-level taxonomic

hierarchies. For example: process, procedure and activity.

In the real world, it can be useful to use different words to distinguish between levels

of abstraction. This stops us having to talk about (say) big goals and little goals,

coarse-grained processes and fine-grained processes.

The hierarchical taxonomies in the Business Motivation Model from the OMG can be

adapted and extended for use by the architects of activity systems thus:

• Aims: goal –< objective –< requirement.

• Directives: principle –< policy –< business rule.

• Solution description: solution vision –< solution outline –< detailed design.

• Plans: strategy –< programme –< project.

For more on this topic: http://avancier.co.uk. > Library > Architecture Concepts > “Granularity”

Bear in mind however that distinctions between the levels are not formal or

universally repeatable in different contexts.

The distinctions cannot be formalised because the context, the scope, to which the

words are applied varies from very large systems and projects to very small ones. So

these word hierarchies are used in a subjective way to indicate how we move up and

down through levels of abstraction in a particular context.

It seems OK to use these word hierarchies in the chaotic and informal management-

consultant-speak of “architecture precursors”. But it is more problematic to do the

same thing in the more formal world of system modelling.

The functions and capabilities of activity systems v58 page 19

Built by Graham Berrisford from contributions to discussions of ArchiMate in LinkedIn and papers at http://avancier.co.uk

This paper is published under the Creative Commons Attribution-No Derivative Works Licence 2.0. Attribution: You may copy,

distribute and display this copyrighted work only if you clearly credit “Avancier Limited: http://avancier.co.uk” before the start

and include this footnote at the end. No Derivative Works: You may copy, distribute, display only complete and verbatim copies

of this paper, not derivative works based upon it.. For more information about the licence, see http://creativecommons.org

Systems are recursively nested. There is one indisputable level of abstraction - the

bottom level. At the bottom level of a data processing system there are elementary

data items and executable instructions. At the top level is the boundary of the system -

a scoping decision made by stakeholders.

Between the top and bottom, you can define hierarchies of processes and components

with many levels. (Though it is commonly said that a hierarchy with three of four

levels is the limit of what is readily understood an maintained by one person.)

Given these variations and uncertainties, it would be risky to go down the road of

defining different levels of system and process composition by using different words,

such as:

• System –< subsystem –< component –< module.

• Process –< procedure –< activity –< executable instruction

This would give false impressions of rigour. There is no agreement that there are four

distinguishable levels of abstraction for architecture, or that this could be generally

applied across most systems.

Some do use process, procedure and activity as a taxonomic hierarchy, but the levels

are not formally distinct or repeatable in all contexts. In a meta model of activity

system concepts they are better generalised as “process”.

Architects understand that, since there are large systems and small systems, and

infinite levels of system composition are possible, they have to make a judgement

about the right level to pitch their architectural description.

Can any architecture language work for stakeholders?

Architects have to be taught architecture concepts. A 3-day course is surely a minimal

expectation. An examination in architecture concepts has to be based on an agreed

vocabulary of words. I can’t think how to get around these facts.

So how can we expect untrained-architects to readily understand this vocabulary? Or

to understand any “language” of graphical symbols such as can be found in

ArchiMate or UML? Surely, it must be the job of the architect to translate from the

word/concept/symbol combinations they have been taught into the language of the

stakeholder in front of them.

