Logicality

- ➤ To help you recognise various Logical-to-Physical* Process Threads which underpin architecture approaches
 - (ArchiMate, TOGAF, Zachman Framework, BCS reference model)
- Business to IT
- 2. Construction
- 3. Realisation
- 4. Reification
- 5. Specialisation
- 6. Decomposition (top-down, what-how cascade)

^{*} Nothing in the world of system specification is physical in the sense of tangible, so logical and physical are steps in a specification process that leads to a working system, which is "real".

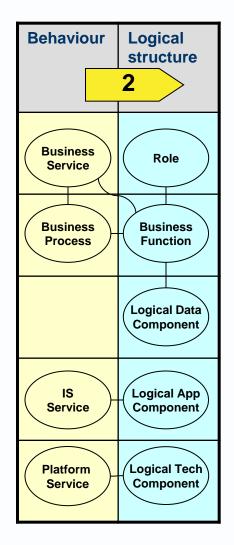
Six process threads used in architecture methods

- Business to IT
 - start with the Business need especially for Data
 - define Applications to provide that Data
 - define the Technology Platform needed by those Apps
- Construction
 - start with the required Behaviour Processes
 - define a Structure of Components to execute those Processes
- Realisation
 - start with the External Interface of the System or Component
 - define the Internal Structure of the System or Component
- Reification
 - start with Idealised (Vendor and Technology Neutral) Components
 - define Real Components that will do the work
- Specialisation
 - start with Generic, Universal, Structures and Components
 - make them Specific, Unique to our Enterprise
- Decomposition (top-down, what-how cascade)
 - start with high-level requirements
 - elaborate until we have defined the detail of components to meet them

1. Business to IT

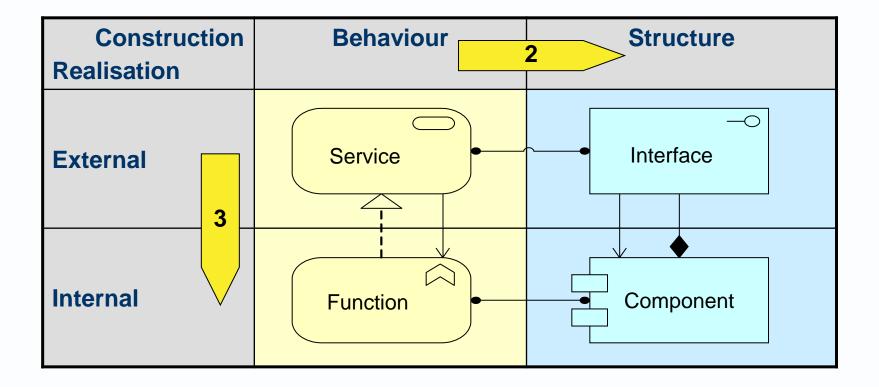
- start with the Business need for Data
- define Applications to provide that Data
- define the Technology Platform needed by those Apps

Migration		Baseline	Target	
Business to IT				
Business		Process Organisation Locations	Process Organisation Locations	
Information Systems	1	Data Applications	Data Applications	
Technology		Infrastructure Technologies	Infrastructure Technologies	


TOGAF maps services and processes to components

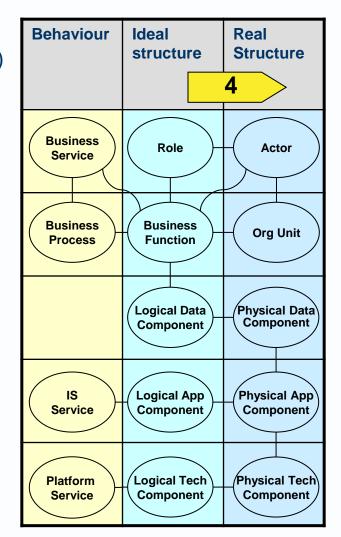
1. Business to IT

- 2. Construction: Behaviour to Structure
 - start with the required Behaviour Processes
 - define the Structure of Components to execute those Processes


Construction		Behaviour	Structure		
Business to		2			
Business		Business Service Business Process	Business Function		
Information Systems	1	Information System Service	Logical Application Component		
Technology		Platform Service	Logical Technology Component		

ArchiMate and BCS do likewise

- 2. Construction: Behaviour to Structure
- 3. Realisation: External to Internal
 - start with the External Interface of the System or Component
 - define the Internal Structure of the System or Component

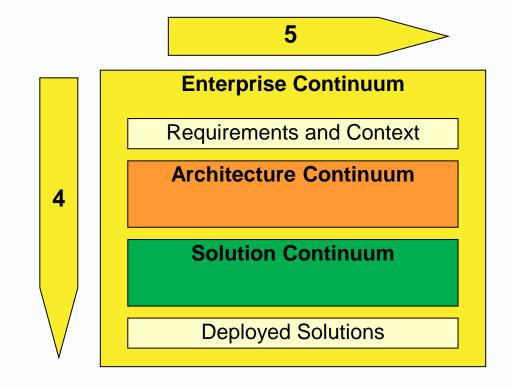

TOGAF defines logical structure before physical structure

4. Reification: Ideal-to-Real

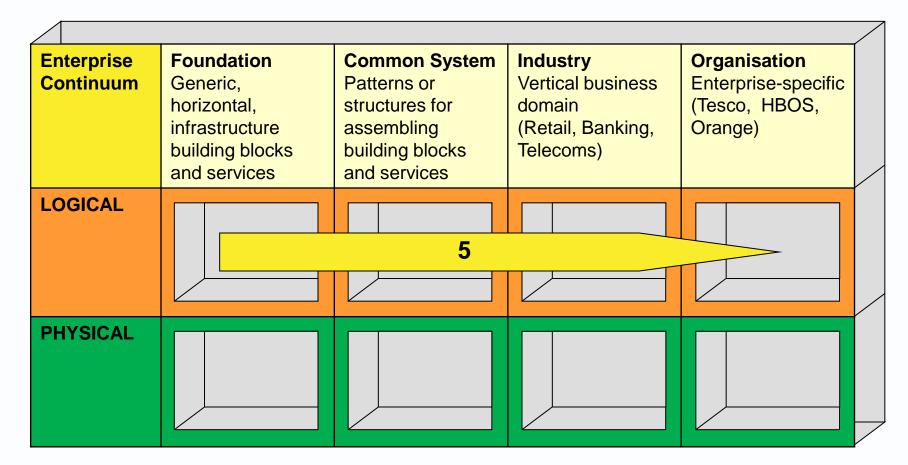
- start with Idealised (Vendor and Technology Neutral) Components
- define Real Components to do the work

Construction Reification	Behaviour	Structure
Logical	Service Process	Architecture Building Block
Physical		Solution Building Block

The Zachman Framework has six levels of ideal-to-real


- "a schema based on two classifications
 - the primitive interrogatives: What, How, When, Who, Where, and Why.
 - reification, the transformation of an abstract idea into an instantiation."

The Zachman Framework			What	How	Where	Who	When	Why
Ideal to Real		Identification						
	4	Definition						
		Representation						
		Specification						
		Configuration						
		Instantiation						


TOGAF's Enterprise Continuum features two threads

- 4. Reification: Ideal-to-Real
- 5. Specialisation: General to Specific
 - start with Generic, Universal Structures and Components
 - make them Specific to our Enterprise

Specialisation: General to Specific

- From generic nuts, bolts and building blocks
- To organisation-specific structures and components

Decomposition (top-down, what-how cascade)

- Our papers on Abstraction distinguish
 - Idealisation Realisation
 - Generalisation Specialisation
 - Composition Decomposition
- All three kinds of abstraction may be used in a process that takes us from a more logical specification to a more physical specification, separately and together
- Top-down decomposition is perhaps the primary tool used in elaboration of a specification to the point where builders can use it

Top-down and bottom-up process threads

- Top-down: designing a new system
 - start with external actor's requirements for outputs
 - map each output to one or more broad services
 - decompose services until you can match each to a provided (or providable) service or component
 - be it reusable in enterprise service catalogue, or buyable in a package. or buildable a bespoke system
- Bottom up: building an effective enterprise-wide SOA
 - must deliver a manageable catalogue of services
 - limited to common use services
 - and actively managed in a way that
 - must encourage and assist people to match
 - required services (identified in instances of method A)
 - provided (or providable) services
 - cuts across instances of method A

Using the Logical-to-Physical Process Threads

- Different architecture frameworks use different selections of the logical-to-physical process threads
- For example

	Thread	ArchiMate	TOGAF
1	Business to IT	Business, Apps, Infrastructure	Business, Data, Apps, Technology
2	Construction	Behaviour to Structure	Behaviour to Structure
3	Realisation	External to Physical	
4	Reification		Ideal to Real
5	Specialisation		General to Specific
6	Decomposition		Top-down elaboration

1 of 6 related presentations at http://avancier.co.uk

Logicality

Process threads you will find in various architecture frameworks

Modularity

Foundation concepts and strands in the modelling of human and computer activity systems

Granularity

The challenge of multi-level goals, plans and specifications

Architecture meta meta concepts

A 4 cell schema for modelling systems, which helps you understand meta models

Functionality

Functions, Organisation Units and Processes in human activity systems

Architecture meta models

Comparing the meta models of industry standard architecture frameworks