
Copyright Avancier Limited 

Avancier

Avancier Methods (AM)
Guidance and Techniques

Modularity in activity systems

(the restaurant analogy)

It is illegal to copy, share or show this document 

(or other document published at http://avancier.co.uk)

without the written permission of the copyright holder



Copyright Avancier Limited 

Avancier
Challenges in the design of activity systems

► Not only how to design and build activity systems, both

■ human activity systems (businesses) and 

■ computer activity systems (applications).

► In terms of

■ Business Components

■ Application Software Components

■ Technology Platform Components

► But also

■ how to wade through the swamp of the words we use 

● (like “component”) 

■ to find whether we are talking about the same thing.



Copyright Avancier Limited 

Avancier
Modularity in activity systems

Something customers want from 
the system, or the system wants 
from suppliers. 
A result of processes, but defined 
in a service contract without 
reference to the internal logic of 
processes used.

A collection of services (to the 
left) that is required or provided 

by one or more components 
(below).

What happens. 
A logical sequence of activities that 
ends up delivering a service at 
some level of granularity. 
Executed by components.

A subsystem that does work, 
executes activities. 

A cohesive group of related but 
distinctly invokable activities, 

encapsulated behind an 
interface.

Process

Service

Component

Interface



Copyright Avancier Limited 

Avancier
Client components require services

► You need a meal ► A component playing a client 
role requires a service.

Required
Service



Copyright Avancier Limited 

Avancier
Server components provide services

► Restaurants provide meals. ► Various components (playing 

a server role) can provide a 

service.

Component

Provided
Service

Provided
Service



Copyright Avancier Limited 

Avancier
Service contracts are published in interfaces to components

► Restaurants publish a service catalogue

► A list of services can be published as 

an interface to a component

Interface

Component

ServiceService

Starters
Mains
Desserts…



Copyright Avancier Limited 

Avancier

Service contracts may be separated (in catalogues and directories) 
from service delivery (in components)

► Restaurants can publish their 

menus away from the 

restaurant location

► A list of services can be separated from 

the component(s) that execute the 

services.

Component

ServiceService

Interface



Copyright Avancier Limited 

Avancier
In our restaurant

► Services

■ menu items

► Interfaces

■ menus

► Processes

■ procedures the waiter and kitchen staff follow.

► Components

■ waiter, chef and oven.



Copyright Avancier Limited 

Avancier
Governance of services

► Governance of their menus is the restaurant’s responsibility.

► Customer’s expressed requirements have a strong influence, 
but they are not the only criteria used to decide which 
services are listed and managed, and how they are specified.

► So governance of services needs

■ Artifacts

● The service catalogue and interface provided.

■ Organisation

● Roles needed to create, modify and delete services in the Interfaces, 

and authorise those changes.

■ Processes

● Procedures for change requests, impact analysis, approvals etc.



Copyright Avancier Limited 

Avancier
Strictly – our illustration is too simplistic

► We have had a lot of trouble with the word interface

► In the end, we decided

■ The restaurant menu is an interface

■ The waiter acts as an facade to the back end components

► And we can distinguish:
■ Catalogue: A list of services that is managed/governed.

■ Directory: A list of services with their addresses and how to find them

■ Interface: A list of services required or provided by a system or component

■ Façade: An indirect broker or mediator component, though which services can 

be invoked by a client



Copyright Avancier Limited 

Avancier
Required service must match provided service

► You accept a menu item 

description and the price

► A client must match their 

required service to the contract 
of a provided service.

Component

Required
Service

Provided
Service

?



Copyright Avancier Limited 

Avancier
Every component needs a work place

► A Restaurant needs a work place with the necessary 
resources.

► A component needs a host computer with memory and 
processor that are sufficient.



Copyright Avancier Limited 

Avancier
A network is needed to reach the work places

► Roads are needed to reach the restaurant.

► A network is needed to reach a computer that hosts a 
component.

ASIDE

► To be shared, a service must be locatable by remote clients

► To be locatable, the server component must sit on a server node of a computer network. 

► The server component must have its own local memory on the server node

► The network must be a wide as the enterprise within which clients request the service. 

► This doesn’t imply any specific network technologies or protocols. In SOA however, most 
assume the server component can be accessed via Internet Protocols.



Copyright Avancier Limited 

Avancier

A work place may contain several instances (actors) of component
type (role)

► From the restaurant’s team of waiters, one must be selected 
to serve a menu item (or perhaps a whole meal)

► The computer may host 

■ a singleton server component

■ several uniquely-named server components

● (akin to objects of a class in OO)



Copyright Avancier Limited 

Avancier

A server component provides a service via a channel at the work 
place

► A waiter sits you a table in the restaurant to offer his services

► A server component provides a service to its clients through a port 
on a networked computer.

ASIDE

► A client needs various facts to find a service in a name space in the memory of a 
server on a network. 

► These facts vary, depending on the degree of coupling by location and coupling by 
programming style.

► Put aside for now
■ How the client locates (directly or indirectly) the server component.

■ Whether the client needs a physical address or logical address, a single address or a 
hierarchy of addresses.

■ Whether a client uses a broker to communicate with the server.



Copyright Avancier Limited 

Avancier
Clients and servers must share language and protocols

► You must talk to the waiter in a language he understands.

► A client must use the data types and protocols that the server 
component understands

► These may be defined in a service interface that is separate from 
the component that does the work, for which there are standard 
Interface Definition Languages (IDLs), including WSDL

ASIDE: Martin Jewell

► Web Services not = SOA. 

► A Web Service with multiple operations in a single WSDL interface is contrary to SOA principles.

► But SOA can be implemented using WSDL if the Web Service is implemented in the right way 
(singular operation and no polymorphism).



Copyright Avancier Limited 

Avancier
Clients give service instructions, client designers need more

► You tell the waiter you want a menu item and how well cooked it 

should be.

► A client sends a request message to initiate a service. This carries 

the signature of the service – its name and its parameters.

ASIDE

► Client designers need to know more than instructions that make a service run (its 
signature), before they allow the client to call the service

► The need also to know meaning of the service - what it does with its instructions

■ the functional and non-functional requirements it meets

► And how well the service must do things

■ its non-functional requirements

■ including any commercial agreement covering payment for the execution and maintenance of the 

service. 



Copyright Avancier Limited 

Avancier
A client may or may not wait for a service

► You have to wait for a menu item 

■ (You can’t go off and do something else)

► A client may use a synchronous style and wait for the result, 

► or leave a message for the server component to work on.



Copyright Avancier Limited 

Avancier
Every Process reaches an End

► Every Process ends in a result *

► The result may be called variously

■ The Goal of the Process.

■ The Output of the Process

■ The Service delivered by the Process to one or more consumer 

Actors.

► * ASIDE

■ In computer science, process is a subtype of procedure. 

■ A process is a procedure that terminates - as opposed to a procedure that 

iterates forever (like the procedure to calculate the value of pi).



Copyright Avancier Limited 

Avancier
Service delivery is the outcome of a process

My meal is the end result of a 

process.

Service delivery is the outcome of 

process steps executed or 

orchestrated by a Component

Service

Process inside
Component

Request

Reply



Copyright Avancier Limited 

Avancier

Process

Two kinds of service and process

► Request-reply service

► Fire-and-forget service

Request

Process

Fire Result

ASIDE: Chris Britton
Most client-server interactions are request-reply or fire and forget, though there are variations.
A technology (e.g. Tuxedo Open/OLTP) might allow a client component to send a message, go off and do 
something else, but every now and then check to see if a reply has come. Ultimately - once all the other things 
have been done - the client is waiting for a reply.
A technology might allow a component to initiate parallel threads up and down the client-server stack - talking to a 
user interface and a data server – e.g. send a message to back to the user’s screen if the server is slow, saying 
“the server hasn’t replied yet”.

Reply



Copyright Avancier Limited 

Avancier
Services and processes are nested

Longer Processes (executed in a wider System) 

► Orchestrate

Shorter Processes (executed in narrower Components)

Long ProcessTrigger
Event
Service request

Result
Event
Service delivery

ProcessTrigger
Event
Service request

Result
Event
Service delivery

Short ProcessTrigger
Event
Service request

Result
Event
Service delivery



Copyright Avancier Limited 

Avancier
The process may be atomic

► Half a menu item is 

unacceptable. You won’t pay if 

it is not complete.

► A service/process might be 

transactional

Process

Request

Reply



Copyright Avancier Limited 

Avancier
The process may be contained within a component

► A waiter is the only actor to 

serve a menu item

► A service might be delivered by 

a process that is executed by 

one component.

Process inside
Component

Request

Reply



Copyright Avancier Limited 

Avancier
The process may be decomposed and span many components

► A meal is only one step in a 
longer end-to-end process, 
■ You feel hungry

■ You choose a restaurant

■ You schedule an arrival time

■ You order a meal

■ You eat the meal

■ You pay for the service

► Long-term or end-to-end 
processes usually require the 

cooperation of many 

components.

► The wider the orchestration, the 

harder it is to make the process

transactional.



Copyright Avancier Limited 

Avancier
Components are nested

Systems are composed of components, which are composed of 
components…

System

Component

Component

Component

Component



Copyright Avancier Limited 

Avancier
Granularity changes how we think about things

► A coarse-grained Component 

■ contains and executes finer-grained Processes

► A coarse-grained Process 

■ is performed by the cooperation of finer-grained Components



Copyright Avancier Limited 

Avancier
You need a meal

1. You need a meal.

2. Restaurants provide meals.

3. Restaurants publish lists of services (starters, main courses…).

4. Restaurants can publish a service catalogue away from any restaurant

5. You accept one menu item description and price

6. The Restaurant works in a location with the necessary resources.

7. Roads are needed to reach the restaurant.

8. From the restaurant’s team of waiters, one must be selected 

9. A waiter sits you a table in the restaurant to offer his services.

10. You must talk to the waiter in a language he understands.

11. You tell the waiter you want a menu item, and how well cooked it should be.

12. You have to wait for the service (you can’t go off and do something else)

13. My meal is the end result of a process

14. Half a menu item is unacceptable. You won’t pay if it is not complete.

15. A waiter is the only actor to serve a menu item

16. The meal is only one step in a longer end-to-end process



Copyright Avancier Limited 

Avancier
Architectural principles in the restaurant story

1. Client and Server are roles played by Components
1. Client components require services
2. Server components provide services

2. A Service is offered to the terms of a Service Contract
1. Service contracts are published in interfaces to components
2. Service contracts may be separated (in directories and facades) from service delivery 

components
3. Required service must match provided service 

3. Work Places are reached via a Network
1. Every component needs a work place
2. A network is needed to reach the work places
3. A work place may contain several instances (actors) of component type (role)
4. A server component provides a service via a channel within a work place

4. Clients talk to Servers
1. Clients and servers must share protocols and language
2. Clients give service instructions, client designers need more
3. A client may or may not wait for a service.

5. Service delivery is the outcome of a process
1. Service delivery is the outcome of process steps executed or orchestrated by a Component
2. The process may be atomic
3. The process may be contained within a component
4. The process may be decomposed and span many components

6. Systems are composed and decomposed
1. Components are nested
2. Processes are nested 



Copyright Avancier Limited 

Avancier
People use “function” ambiguously

An “Application Function” is the 

process in a required use case, 

which may require one or more 

application components

A “Business Function” is a unit of 

structure grouping actions deployed 

to Organisation Units, (which are 

instantiated and use actors to 

execute the actions.)

ComponentProcess

InterfaceService



Copyright Avancier Limited 

Avancier
“Interface” is widely used in many way

► Directory

► A list of services with the addresses of where 
they can be found

► Façade

► A channel to a list of services provided by one 
or more “server” components

► Data flow

► A message (e.g. a file containing payment 
records, or a text document) passed from a 
“sender” component to one or more “receiver”
components.

► Protocol

► One or more layers of protocols needed to 
invoke services, or send a data flow or via a 
channel

► Channel

► A mechanism (telephone, HCI, internet, 
private network) used to make a client-server 
connection or transmit a data flow.

ComponentProcess

InterfaceService



Copyright Avancier Limited 

Avancier

ITSM uses words differently again
(definitions below taken from the Common Information Model for ITSM)

ITSM uses these words differently

► Process: a single instance of a running program. 
■ A user of the OS sees a Process as an application or task. 

■ Within an OS, a Process is defined by a workspace of memory resources and environmental 
settings allocated to it. 

■ A Process can execute as multiple Threads which run within the same workspace.

► Service: the availability of functionality that can be managed. 
■ may be provided by an entity such as a Logical Device or a Software Feature, or both. 

■ typically provides only functionality required for management of itself or the elements it affects.

But uses these words much the same

► System: an entity made of component parts that operates as a 'functional whole'.
■ uniquely named and independently managed in an enterprise. 

■ The entire abstraction can be enabled or disabled at a higher level than enabling or disabling of its 
component parts.

► View: a class providing de-normalized, aggregate representations of managed 

resources.



Copyright Avancier Limited 

Avancier
A selection of architectural issues dating back a generation

► How many levels of granularity to define services, processes, 
interfaces and components?

► How to design, catalogue and manage those definitions a way that
leads to effective reuse?

► What to do when we want to a wind back an ill-fated process, but it 
cannot be made transactional?

► What to do when required services differ somewhat from already-
provided services?

► At what point does increasing reuse unacceptably raise

■ Complexity of configuration management?

■ Costs of maintenance?

■ Pressure on service level agreements?

► These questions predate SOA, and will postdate it



Copyright Avancier Limited 

Avancier
1 of 6 related presentations in the Library at http://avancier.co.uk

This presentation is for those interested in aligning different architecture frameworks

Logicality

Process threads you will find in various 

architecture frameworks

Granularity

The challenge of multi-level goals, plans 

and specifications

Functionality

Functions, Organisation Units and 

Processes in human activity systems

Modularity

Foundation concepts and strands in the 

modelling of human and computer 

activity systems

Architecture meta meta concepts
A 4 cell schema for modelling systems, 

which helps you understand meta 

models

Architecture meta models

Comparing the meta models of industry 

standard architecture frameworks


